Skip to main content

Advertisement

Log in

A high number of multidrug-resistant and predominant genetically related cluster of Shigella flexneri strains isolated over 34 years in Brazil

  • Bacterial Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Shigella flexneri has been a major public health problem in developing countries. This work analyzed the frequency of 16 virulence genes, the genotypic diversity, and the antimicrobial resistance profiles of 130 S. flexneri strains isolated in Brazil. The ipaH gene was found in all the 130 strains. The frequencies of the other genes were variable ial (88.5%), sigA (82.3%), iuc (74.6%), virA (73%), pic (72.3%), virF (57.7%), sat (48.5%), ipaBCD (37%), sen (36%), set1A (35.4%), sepA (30%), set1B (30%), virB (14%), icsA (10%), and ipgD (5.4%). A total of 57 (43.8%) strains were multidrug-resistant. ERIC-PCR grouped 96 of the strains into a single cluster with ≥ 70.4% of similarity, 75 of these strains presented a similarity ≥ 80.9%. PFGE grouped 120 of the strains into a single cluster with 57.4% of similarity and 82 of these strains presented a similarity ≥ 70.6%. In conclusion, the high frequency of some virulence genes reinforces the pathogenic potential of the strains studied. The high rates of MDR strains are alarming once it may lead to failure when antimicrobial treatment is necessary. Genotype techniques reveled a major cluster with high genetic similarity including S. flexneri strains from the different Brazilian states and distinct years of isolation, showing that they probably emerged from a common ancestor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lima IF, Havt A, Lima AA (2015) Update on molecular epidemiology of Shigella infection. Curr Opin Gastroenterol 31:30–37. https://doi.org/10.1097/MOG.0000000000000136

    Article  PubMed  Google Scholar 

  2. Medeiros PHQS, Lima AM, Guedes MM, Havt A, Bona MD, Rey LC, Soares AM, Guerrant RL, Weigl BH, Lima IFN (2018) Molecular characterization of virulence and antimicrobial resistance profile of Shigella species isolated from children with moderate to severe diarrhea in northeastern Brazil. Diagn Microbiol Infect Dis 90:198–205. https://doi.org/10.1016/j.diagmicrobio.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  3. The HC, Thanh DP, Holt KE, Thomson NR, Baker S (2016) The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 14:235–250. https://doi.org/10.1038/nrmicro.2016.10

    Article  CAS  PubMed  Google Scholar 

  4. Brasil (2019) Surtos de doenças transmitidas por alimentos no Brasil. Ministério da Saúde do Brasil. http://portalarquivos.saude.gov.br/images/pdf/2016/dezembro/09/Apresentacao-Surtos-DTA-2016.pdf. Accessed 25 Nov 2019

  5. Ferreira LG, Campos LC, Martinez MB (2015) Shigella. In: Trabulsi LR, Alterthum F (eds) Microbiologia, 6th edn. Atheneu, São Paulo, pp 343–350

  6. Nunes MR, Magalhães PP, Penna FJ, Nunes JM, Mendes EN (2012) Diarrhea associated with Shigella in children and susceptibility to antimicrobials. J Pediatr 88:125–128. https://doi.org/10.2223/JPED.2131

    Article  Google Scholar 

  7. Bastos FC, Loureiro EC (2011) Antimicrobial resistance of Shigella spp. isolated in the state of Pará, Brazil. Rev Soc Bras Med Trop 44:607–610. https://doi.org/10.1590/s0037-86822011005000051

    Article  PubMed  Google Scholar 

  8. Vubil D, Balleste-Delpierre C, Mabunda R, Acácio S, Garrine M, Nhampossa T, Alonso P, Mandomando I, Vila J (2018) Antibiotic resistance and molecular characterization of shigella isolates recovered from children aged less than 5 years in Manhiça, southern Mozambique. Int J Antimicrob Agents 51:881–887. https://doi.org/10.1016/j.ijantimicag.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  9. Guerrant RL, Van Gilder T, Steiner TS, Thielman NM, Slutsker L, Tauxe RV, Hennessy T, Griffin PM, DuPont H, Sack RB, Tarr P, Neill M, Nachamkin I, Reller LB, Osterholm MT, Bennish ML, Pickering LK, America IDSo (2001) Practice guidelines for the management of infectious diarrhea. Clin Infect Dis 32:331–351. https://doi.org/10.1086/318514

    Article  CAS  PubMed  Google Scholar 

  10. Poirel L, Cattoir V, Nordmann P (2012) Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol 3:24. https://doi.org/10.3389/fmicb.2012.00024

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee TM, Chang CY, Chang LL, Chen WM, Wang TK, Chang SF (2003) One predominant type of genetically closely related Shigella sonnei prevalent in four sequential outbreaks in school children. Diagn Microbiol Infect Dis 45:173–181. https://doi.org/10.1016/s0732-8893(02)00524-2

    Article  PubMed  Google Scholar 

  12. Angelini M, Stehling EG, Moretti ML, da Silveira WD (2009) Molecular epidemiology of Shigella spp strains isolated in two different metropolitam areas of southeast Brazil. Braz J Microbiol 40:685–692. https://doi.org/10.1590/S1517-838220090003000034

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kosek M, Yori PP, Gilman RH, Vela H, Olortegui MP, Chavez CB, Calderon M, Bao JP, Hall E, Maves R, Burga R, Sanchez GM (2012) Facilitated molecular typing of Shigella isolates using ERIC-PCR. Am J Trop Med Hyg 86:1018–1025. https://doi.org/10.4269/ajtmh.2012.11-0671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seribelli AA, Frazão MR, Medeiros MIC, Falcão JP (2016) Molecular and phenotypic characterization of strains of Shigella sonnei isolated over 31 years suggests the circulation of two prevalent subtypes in São Paulo state, Brazil. J Med Microbiol 65:666–677. https://doi.org/10.1099/jmm.0.000290

    Article  CAS  PubMed  Google Scholar 

  15. Orlandi PP, Silva T, Magalhães GF, Alves F, de Almeida Cunha RP, Durlacher R, da Silva LH (2001) Enteropathogens associated with diarrheal disease in infants of poor urban areas of Porto Velho, Rondônia: a preliminary study. Mem Inst Oswaldo Cruz 96:621–625. https://doi.org/10.1590/s0074-02762001000500005

    Article  CAS  PubMed  Google Scholar 

  16. Silva T, Nogueira PA, Magalhães GF, Grava AF, Silva LH, Orlandi PP (2008) Characterization of Shigella spp. by antimicrobial resistance and PCR detection of ipa genes in an infantile population from Porto Velho (Western Amazon region), Brazil. Mem Inst Oswaldo Cruz 103:731–733. https://doi.org/10.1590/s0074-02762008000700017

    Article  PubMed  Google Scholar 

  17. de Paula CM, Mercedes PG, do Amaral PH, Tondo EC (2010) Antimicrobial resistance and PCR-ribotyping of Shigella responsible for foodborne outbreaks occurred in southern Brazil. Braz J Microbiol 41:966–977. https://doi.org/10.1590/S1517-838220100004000015

    Article  PubMed  Google Scholar 

  18. Sousa M, Mendes EN, Collares GB, Péret-Filho LA, Penna FJ, Magalhães PP (2013) Shigella in Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and virulence genes. Mem Inst Oswaldo Cruz 108:30–35. https://doi.org/10.1590/s0074-02762013000100005

    Article  PubMed  PubMed Central  Google Scholar 

  19. da Cruz CB, de Souza MC, Serra PT, Santos I, Balieiro A, Pieri FA, Nogueira PA, Orlandi PP (2014) Virulence factors associated with pediatric shigellosis in Brazilian Amazon. Biomed Res Int 2014:539697–539699. https://doi.org/10.1155/2014/539697

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campioni F, Falcão JP (2014) Genotypic diversity and virulence markers of Yersinia enterocolitica biotype 1A strains isolated from clinical and non-clinical origins. APMIS 122:215–222. https://doi.org/10.1111/apm.12126

    Article  CAS  PubMed  Google Scholar 

  21. Falcão JP, Falcão DP, Pitondo-Silva A, Malaspina AC, Brocchi M (2006) Molecular typing and virulence markers of Yersinia enterocolitica strains from human, animal and food origins isolated between 1968 and 2000 in Brazil. J Med Microbiol 55:1539–1548. https://doi.org/10.1099/jmm.0.46733-0

    Article  CAS  PubMed  Google Scholar 

  22. Kingombe CI, Cerqueira-Campos ML, Farber JM (2005) Molecular strategies for the detection, identification, and differentiation between enteroinvasive Escherichia coli and Shigella spp. J Food Prot 68:239–245. https://doi.org/10.4315/0362-028x-68.2.239

    Article  PubMed  Google Scholar 

  23. Faruque SM, Khan R, Kamruzzaman M, Yamasaki S, Ahmad QS, Azim T, Nair GB, Takeda Y, Sack DA (2002) Isolation of Shigella dysenteriae type 1 and S. flexneri strains from surface waters in Bangladesh: comparative molecular analysis of environmental Shigella isolates versus clinical strains. Appl Environ Microbiol 68:3908–3913. https://doi.org/10.1128/aem.68.8.3908-3913.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frankel G, Giron JA, Valmassoi J, Schoolnik GK (1989) Multi-gene amplification: simultaneous detection of three virulence genes in diarrhoeal stool. Mol Microbiol 3:1729–1734. https://doi.org/10.1111/j.1365-2958.1989.tb00158.x

    Article  CAS  PubMed  Google Scholar 

  25. Fasano A, Noriega FR, Maneval DR, Chanasongcram S, Russell R, Guandalini S, Levine MM (1995) Shigella enterotoxin 1: an enterotoxin of Shigella flexneri 2a active in rabbit small intestine in vivo and in vitro. J Clin Invest 95:2853–2861. https://doi.org/10.1172/JCI117991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farfán MJ, Garay TA, Prado CA, Filliol I, Ulloa MT, Toro CS (2010) A new multiplex PCR for differential identification of Shigella flexneri and Shigella sonnei and detection of Shigella virulence determinants. Epidemiol Infect 138:525–533. https://doi.org/10.1017/S0950268809990823

    Article  CAS  PubMed  Google Scholar 

  27. Boisen N, Ruiz-Perez F, Scheutz F, Krogfelt KA, Nataro JP (2009) Short report: high prevalence of serine protease autotransporter cytotoxins among strains of enteroaggregative Escherichia coli. Am J Trop Med Hyg 80:294–301

    Article  CAS  Google Scholar 

  28. Vidal M, Kruger E, Durán C, Lagos R, Levine M, Prado V, Toro C, Vidal R (2005) Single multiplex PCR assay to identify simultaneously the six categories of diarrheagenic Escherichia coli associated with enteric infections. J Clin Microbiol 43:5362–5365. https://doi.org/10.1128/JCM.43.10.5362-5365.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lan R, Lumb B, Ryan D, Reeves PR (2001) Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive Escherichia coli. Infect Immun 69:6303–6309. https://doi.org/10.1128/IAI.69.10.6303-6309.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Villalobo E, Torres A (1998) PCR for detection of Shigella spp. in mayonnaise. Appl Environ Microbiol 64:1242–1245

    Article  CAS  Google Scholar 

  31. Müller D, Greune L, Heusipp G, Karch H, Fruth A, Tschäpe H, Schmidt MA (2007) Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl Environ Microbiol 73:3380–3390. https://doi.org/10.1128/AEM.02855-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lett MC, Sasakawa C, Okada N, Sakai T, Makino S, Yamada M, Komatsu K, Yoshikawa M (1989) virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol 171:353–359. https://doi.org/10.1128/jb.171.1.353-359.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. CLSI (2018) Performance standards for antimicrobial susceptibility testing. CLSI Supplement M100. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  34. Zhang J, Jin H, Hu J, Yuan Z, Shi W, Yang X, Xu X, Meng J (2014) Antimicrobial resistance of Shigella spp. from humans in Shanghai, China, 2004-2011. Diagn Microbiol Infect Dis 78:282–286. https://doi.org/10.1016/j.diagmicrobio.2013.11.023

    Article  CAS  PubMed  Google Scholar 

  35. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831. https://doi.org/10.1093/nar/19.24.6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67. https://doi.org/10.1089/fpd.2006.3.59

    Article  CAS  PubMed  Google Scholar 

  37. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466

    Article  CAS  Google Scholar 

  38. Lluque A, Mosquito S, Gomes C, Riveros M, Durand D, Tilley DH, Bernal M, Prada A, Ochoa TJ, Ruiz J (2015) Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int J Med Microbiol 305:480–490. https://doi.org/10.1016/j.ijmm.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boisen N, Scheutz F, Rasko DA, Redman JC, Persson S, Simon J, Kotloff KL, Levine MM, Sow S, Tamboura B, Toure A, Malle D, Panchalingam S, Krogfelt KA, Nataro JP (2012) Genomic characterization of enteroaggregative Escherichia coli from children in Mali. J Infect Dis 205:431–444. https://doi.org/10.1093/infdis/jir757

    Article  CAS  PubMed  Google Scholar 

  40. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Müller L, King LA, Rosner B, Buchholz U, Stark K, Krause G, Team HI (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 365:1771–1780. https://doi.org/10.1056/NEJMoa1106483

    Article  CAS  PubMed  Google Scholar 

  41. Schuch R, Maurelli AT (1997) Virulence plasmid instability in Shigella flexneri 2a is induced by virulence gene expression. Infect Immun 65:3686–3692

    Article  CAS  Google Scholar 

  42. Pilla G, McVicker G, Tang CM (2017) Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences. PLoS Genet 13:e1007014. https://doi.org/10.1371/journal.pgen.1007014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. González-Torralba A, García-Esteban C, Alós JI (2018) Enteropathogens and antibiotics. Enferm Infecc Microbiol Clin 36:47–54. https://doi.org/10.1016/j.eimc.2015.06.015

    Article  PubMed  Google Scholar 

  44. Azmi IJ, Khajanchi BK, Akter F, Hasan TN, Shahnaij M, Akter M, Banik A, Sultana H, Hossain MA, Ahmed MK, Faruque SM, Talukder KA (2014) Fluoroquinolone resistance mechanisms of Shigella flexneri isolated in Bangladesh. PLoS One 9:e102533. https://doi.org/10.1371/journal.pone.0102533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sidrim JJ, Moreira JL, Paixão GC, Lima SB, Filho RE, Rocha MF, Lima AA (1998) Multiple antibiotic resistance mediated by R plasmid in Shigella flexneri strains isolated in the northeast of Brazil. Rev Soc Bras Med Trop 31:263–270. https://doi.org/10.1590/s0037-86821998000300003

    Article  CAS  PubMed  Google Scholar 

  46. Penatti MP, Hollanda LM, Nakazato G, Campos TA, Lancellotti M, Angellini M, Brocchi M, Rocha MM, Dias da Silveira W (2007) Epidemiological characterization of resistance and PCR typing of Shigella flexneri and Shigella sonnei strains isolated from bacillary dysentery cases in Southeast Brazil. Braz J Med Biol Res 40:249–258. https://doi.org/10.1590/s0100-879x2007000200012

    Article  CAS  PubMed  Google Scholar 

  47. Rowe-Magnus DA, Guerout AM, Mazel D (2002) Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol 43:1657–1669. https://doi.org/10.1046/j.1365-2958.2002.02861.x

    Article  CAS  PubMed  Google Scholar 

  48. Ud-Din AI, Wahid SU, Latif HA, Shahnaij M, Akter M, Azmi IJ, Hasan TN, Ahmed D, Hossain MA, Faruque AS, Faruque SM, Talukder KA (2013) Changing trends in the prevalence of Shigella species: emergence of multi-drug resistant Shigella sonnei biotype g in Bangladesh. PLoS One 8:e82601. https://doi.org/10.1371/journal.pone.0082601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Cheng Y, Yang H, Hu L, Cheng J, Ye Y, Li J (2017) Characterization of extended-spectrum β-lactamase genes of Shigella flexneri isolates with fosfomycin resistance from patients in China. Ann Lab Med 37:415–419. https://doi.org/10.3343/alm.2017.37.5.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zamanlou S, Rezaee MA, Aghazadeh M, Ghotaslou R, Nave HH, Khalili Y (2018) Genotypic diversity of multidrug resistant Shigella species from Iran. Infect Chemother 50:29–37. https://doi.org/10.3947/ic.2018.50.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shahnaij M, Latif HA, Azmi IJ, Amin MB, Luna SJ, Islam MA, Talukder KA (2018) Characterization of a serologically atypical Shigella flexneri Z isolated from diarrheal patients in Bangladesh and a proposed serological scheme for Shigella flexneri. PLoS One 13:e0202704. https://doi.org/10.1371/journal.pone.0202704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lima AA, Sidrim JJ, Lima NL, Titlow W, Evans ME, Greenberg RN (1997) Molecular epidemiology of multiply antibiotic-resistant Shigella flexneri in Fortaleza, Brazil. J Clin Microbiol 35:1061–1065

    Article  CAS  Google Scholar 

Download references

Funding

We thank Sao Paulo Research Foundation (FAPESP) (Process number 2014/ 13029-0 and 2016/2716-3) and CAPES for financial support (Finance Code 001). During the course of this work, J. C. G. was supported by National Council for Scientific and Technological Development (CNPq) and J. P Falcão recieved a productive fellowship (CNPq) (Process number 303475/2015-3 and 304399/2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Pfrimer Falcão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Elizabeth Andrade Marques.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(DOCX 17 kb)

Table S2

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzales, J.C., Seribelli, A.A., Gomes, C.N. et al. A high number of multidrug-resistant and predominant genetically related cluster of Shigella flexneri strains isolated over 34 years in Brazil. Braz J Microbiol 51, 1563–1571 (2020). https://doi.org/10.1007/s42770-020-00332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00332-y

Keywords

Navigation