Skip to main content
Log in

Complete Genome Sequence of Ralstonia Phage Remenis, a Member of Putative New Genus within the Siphoviridae

  • Short Communication
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

One of the most destructive diseases affecting potato production globally is bacterial wilt, caused by Ralstonia solanacearum. Options for controlling this pathogen are currently limited. Therefore, in this study, whole genome sequence was used to assess the potential of phage Reminis as biocontrol agent. No sequences related to undesirable genes including virulence factors, antibiotic resistance, or lysogenic mediated or toxin-coding genes were found in phage genome, this suggests that phage Reminis may be a potential candidate for future R. solanacearum control strategies.

Resumen

Una de las enfermedades mas destructivas que afectan la producción de papa globalmente es la marchitez bacteriana, causada por Ralstonia solanacearum. Las opciones para controlar a este patógeno son actualmente limitadas. Por ello, en este estudio, se usó la secuencia genómica para analizar el potencial del fago Reminis como agente de biocontrol. En el genoma del fago no se encontraron secuencias relacionadas con genes “indeseables” que incluyeran factores de virulencia, resistencia a antibiótico, genes de lisogenia o genes que codifiquen toxinas. Esto sugiere que el fago Reminis pudiera ser un candidato potencial para futuras estrategias de control de R. solanacearum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Adriaenssens, E., and J. Brister. 2017. How to name and classify your phage: an informal guide. Viruses 9 (4): 70.

    Article  PubMed Central  Google Scholar 

  • Bolger, A., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (15): 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brussow, H., and F. Desiere. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Molecular Microbiology 39 (2): 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Casjens, S., and E. Gilcrease. 2009. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods in Molecular Biology 502: 91–111.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., D. Zheng, B. Liu, J. Yang, and Q. Jin. 2015. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Research, 44(D1), D694–D697.

  • Fernández, L., D. Gutiérrez, P. García, and A. Rodríguez. 2019. The perfect bacteriophage for therapeutic applications—a quick guide. Antibiotics 8 (3): 126.

    Article  PubMed Central  Google Scholar 

  • Garneau, J., F. Depardieu, L. Fortier, D. Bikard, and M. Monot. 2017. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Scientific Reports 7 (1): 82–92.

    Article  Google Scholar 

  • Green, M., and J. Sambrook. 2018. Isolation of high-molecular-weight DNA from suspension cultures of mammalian cells using proteinase K and phenol. Cold Spring Harbor Protocols (4):pdb.prot093476.

  • Jia, B., A. Raphenya, B. Alcock, N. Waglechner, P. Guo, K. Tsang, B. Lago, B. Dave, S. Pereira, A. Sharma, S. Doshi, M. Courtot, R. Lo, L. Williams, J. Frye, T. Elsayegh, D. Sardar, E. Westman, A. Pawlowski, T. Johnson, F. Brinkman, G. Wright, and A. McArthur. 2016. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research 45 (D1): D566–D573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutter, E., and A. Sulakvelidze. 2005. Bacteriophages: Biology and applications. Boca Raton: CRC Press.

    Google Scholar 

  • Messiha, N., K. Elhalag, N. Balabel, S. Farag, H. Matar, M. Hagag, A. Khairy, M. El-Aliem, E. Eleiwa, O. Saleh, and N. Farag. 2019. Microbial biodiversity as related to crop succession and potato intercropping for management of brown rot disease. Egyptian Journal of Biological Pest Control, 29(1).

  • Wei, C., J. Liu, A. Maina, F. Mwaura, J. Yu, C. Yan, R. Zhang, and H. Wei. 2017. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virologica Sinica 32 (6): 476–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support for the research was provided by the CONACYT (Project no. 251516). The autors appreciates the excellent technical assistance of Ing. Oscar Patrón and Luis Figueroa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Lightbourn.

Electronic Supplementary Material

ESM 1

(DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarillas, L., Estrada-Acosta, M., León-Chan, R.G. et al. Complete Genome Sequence of Ralstonia Phage Remenis, a Member of Putative New Genus within the Siphoviridae. Am. J. Potato Res. 97, 447–449 (2020). https://doi.org/10.1007/s12230-020-09793-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-020-09793-1

Keywords

Navigation