Skip to main content
Log in

Low-Cost Technology for the Purification of Wastewater Contaminated with Pathogenic Bacteria and Heavy Metals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water scarcity has continuously increased over the last decades in countries like Egypt, where agriculture consume > 85% of the country’s water. Increased urbanization, industries, and expensive advanced treatment processes further aggravate this challenge, causing the use of poorly treated or untreated wastewater for crop irrigation. The current study investigated an eco-friendly technology consisting of a constructed wetland planted with Typha latifolia and Cyperus papyrus, with a zeolite substrate for water purification. In the unit containing T. latifolia, the removal efficiency of biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), and ammonia was 68.5%, 71%, 70%, and 82.3% when hydraulic retention time (HRT) was increased from day 1 to 3, respectively. In the unit planted with C. papyrus, the removal efficiency of COD, BOD, TSS, and ammonia was 85.5%, 86.2%, 83.9%, and 92.3% with an increase in HRT from day 1 to 3, respectively. Also, the microbial load was reduced by 99.9%, and complete removal of Salmonella sp. was achieved after 3 days with C. papyrus; with T. latifolia, the removal was 42.8–57.5%. Box–Behnken design was used to optimize the independent factors, including the initial concentration of metals (15 to 45 mg/L) and contact time (24 to 72 h). The removal efficiency of Cu and Zn was 93.4% and 94% at the optimum contact time (72 h), with 16 plant stems and 15 mg/L initial metal concentration. Overall, water from this simple-design and cost-efficient wastewater treatment technology could be reused for agricultural purposes without posing any health threats. This is particularly true with C. papyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data included in the manuscript.

References

  • Abou-Elela, S. I., Elekhnawy, M. A., Khalil, M. T., & Hellal, M. S. (2017). Factors affecting the performance of horizontal flow constructed treatment wetland vegetated with Cyperus papyrus for municipal wastewater treatment. International Journal of Phytoremediation, 19(11), 1023–1028.

    CAS  Google Scholar 

  • Albalawneh, A., Chang, T., Chou, C., & Naoum, S. (2016). Efficiency of a horizontal sub-Surface flow constructed wetland treatment system in an arid area. Water, 8, 51.

    Google Scholar 

  • Al-Maliky, J. H. A., Al-Adhub, A. Y., & Hussain, N. A. (2018). Removal efficiency of fecal coliform at different types of constructed wetland systems, namely VSSF, HSSF, and SF. Journal of Pharmacy & Bioallied Sciences, 6(1), 7–10.

    Google Scholar 

  • APHA. (2012). (American Public Health Association), 2012. Standard methods for the examination of water and wastewater (22nd ed.). Washington (DC): United Book Press.

    Google Scholar 

  • Ashour, M. A., El Atta, S. T., Rafaat, Y. M., & Mohamed, M. N. (2009). Water resources management in Egypt. Journal of Engineering Sciences - Assiut University, 37(2), 269–279.

    Google Scholar 

  • Assar, W., Ibrahim, M. G., Mahmod, W., & Fujii, M. (2019). Assessing the agricultural drainage water with water quality indices in the El-Salam Canal mega project, Egypt. Water., 11(5), 1013.

    CAS  Google Scholar 

  • Atkinson, A. C., & Donev, A. N. (1992). Optimum experimental design, Oxford statistical ScienceSeries N. 8. Oxford: Clarendon Press.

    Google Scholar 

  • Aziz, S. Q., Aziz, H. A., Yusoff, M. S., Bashir, M. J. K., & Umar, M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitarylandfills: a comparative study. Journal of Environmental Management, 91, 2608–2614.

    CAS  Google Scholar 

  • Baysal, A., Ozbek, N., & Akman, S. (2013). Determination of trace metals in waste water and their removal processes. Waste Water - Treatment Technologies and Recent Analytical Developments, Fernando Sebastian García Einschlag and Luciano Carlos, IntechOpen. https://doi.org/10.5772/52025.

  • Beebe, D., (2013). Renovation of ammonia contaminated produced water using constructed wetlands. Ph.D. Thesis, Clemson University.

  • Blatchley, E. R., Hunt, B. A., Duggirala, R., Thompson, J. E., Zhao, J., Halaby, T., Cowger, R. L., Straub, C. M., & Alleman, J. E. (1997). Effects of disinfectants on wastewater effluent toxicity. Water Research, 31(7), 1581–1588.

    CAS  Google Scholar 

  • Bonanno, G., & Giudice, R. L. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645.

    CAS  Google Scholar 

  • Calheiros, C. S. C., Rangel, A. O. S. S., & Castro, P. K. L. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Research, 41, 1790–1798.

    CAS  Google Scholar 

  • Chen, M. Z., Tang, Y. Y., Li, X. P., & Yu, Z. X. (2009). Study on the heavy metals removal efficiencies of constructed wetlands with different substrates. Journal of Water Resource and Protection, 1, 22–28.

    Google Scholar 

  • Cho, M., Kim, J., Kim, J. Y., Yoon, J., & Kim, J. H. (2010). Mechanisms of Escherichia coli inactivation by several. Water Research, 44(11), 3410–3418.

    CAS  Google Scholar 

  • Dewedar, A., Khafagi, I.K., Abu-Seadah, A., El-Din R., 2006.Comparative efficiency of cyperus papyrus and Phragmites australis for bioaccumulation of heavy metals. Proceedings of the first international conference on conservation and management of natural resources, Ismailia, Egypt, June 18-19.

  • Doma, H. S., El-Liethy, M. A., Abdo, S. M., & Ali, G. H. (2016). Potential of using high rate algal pond and algal biofuel production and wastewater treatment. Asian Journal of Chemistry, 28(2), 399–404.

    CAS  Google Scholar 

  • Donde, O. O. (2017). Wastewater management techniques: a review of advancement on the appropriate wastewater treatment principles for sustainability. Environmental Management and Sustainable Development, 6(1), 40–58.

    Google Scholar 

  • El Bouraie, M. M., Motawea, E. A., Mohamed, G. G., & Yehia, M. M. (2011). Water quality of Rosetta branch in Nile delta, Egypt. Suoseura-Finnish Peatland Society, 62, 1,31–1,37.

    Google Scholar 

  • El-Lathy, M. A., El-Taweel, G. E., El-Sonosy, W. M., Samhan, F. A., & Moussa, T. A. (2009). Determination of pathogenic bacteria in wastewater using conventional and PCR techniques. Environmental Biotechnology, 5, 73–80.

    Google Scholar 

  • El-Liethy, M. A., Elwakeel, K. Z., Mohammed, S., & Ahmed, M. S. (2018). Comparison study of Ag(I) and Ag (III) loaded on magnetic thiourea formaldehyde as disinfectants for water pathogenic microorganism's deactivation. Journal of Environmental Chemical Engineering, 6, 4380–4390.

    CAS  Google Scholar 

  • Elliott, M., Stauber, C., DiGiano, F., de Aceituno, A., & Sobsey, M. D. (2015). Investigation of E. coli and virus reductions using replicate, bench-scale biosand filter columns, and two filter media. International Journal of Environmental Research and Public Health, 12, 10276–10299.

    CAS  Google Scholar 

  • Elwakeel, K. Z., El-Liethy, M. A., Ahmed, M. S., Ezzat, S. M., & Kamel, M. M. (2018). Facile synthesis of magnetic disinfectant immobilized with silver ions for water pathogenic microorganism's deactivation. Environmental Science and Pollution Research, 25, 22797–22809.

    CAS  Google Scholar 

  • Fonkou, T., Fonteh, M. F., Kanouo, M. D., & Amougou, A. (2010). Performances des filtres plantés de Echinochloa pyramidalis dans l’épuration des eaux usées de distillerie en Afrique subsaharienne. Tropicultura., 28(2), 69–76.

    Google Scholar 

  • Fu, G., Huangshen, L., Guo, Z., Zhou, Q., & Wu, Z. (2017). Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flowconstructed wetland. Bioresour. Technol., 224, 214–221.

    CAS  Google Scholar 

  • Gaber, H. S., El Kashif, M. A., Ibrhim, S. A., & Authman, M. M. N. (2013). Effect of water pollution in El-Rahawy drainage canal on hematology and organs of freshwater fish Clarias gariepinus. World Applied Sciences Journal, 21(3), 329–341.

    CAS  Google Scholar 

  • Galal, T. M., Eid, E. M., Dakhil, M. A., & Hassan, L. M. (2018). Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. International Journal of Phytoremediation, 20(5), 440–447.

    CAS  Google Scholar 

  • Giácoman-Vallejos, G., Ponce-Caballero, C., & Champagne, P. (2015). Pathogen removal from domestic and swine wastewater by experimental constructed wetlands. Water Science and Technology, 71(8), 1263–1270.

    Google Scholar 

  • Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria andprotozoan (oo) cysts in water: a review. Water Research, 40, 3–22.

    CAS  Google Scholar 

  • Hrenovic, J., Milenkovic, J., Goic-Barisic, I., & Rajic, N. (2013). Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacterbaumannii. Microporous and Mesoporous Materials, 169, 148–152.

    CAS  Google Scholar 

  • Ibrahim, S., El-Liethy, M. A., Abia, A. L. K., Abdel-Gabbar, M., Al Zanaty, A. M., & Kamel, M. M. (2020). Design of a bioaugmented multistage biofilter for accelerated municipal wastewater treatment and deactivation of pathogenic microorganisms. Science of the Total Environment, 703, 134786.

    CAS  Google Scholar 

  • Jamil, T. S., Mansor, E. S., & El-Liethy, M. A. (2015). Photocatalytic inactivation of E. coli using nano-size bismuth oxyiodide photocatalysts under visible light. Journal of Environmental Chemical Engineering, 3, 2463–2471.

    CAS  Google Scholar 

  • Jamwal, P., Phillips, D., & Karlsrud, K. (2019). Assessing local materials for the treatment of wastewater in open drains. Water Science and Technology, 79(5), 895–904.

    CAS  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2008). Treatment wetlands (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Khater, A. E., Kitamura, Y., Shimizu, K., Somura, H., & Abou El Hassan, W. H. (2014). Improving water quality in the Nile Delta irrigation network by regulating reuse of agricultural drainage water. Journal of Food, Agriculture and Environment, 12, 329–337.

    Google Scholar 

  • Kipasika, H. J., Buza, J., Smith, W. A., & Njau, K. N. (2016). Removal capacity of faecal pathogens from wastewater by four wetland vegetation: Typha latifolia, Cyperus papyrus, Cyperus alternifolius and Phragmites australis. African Journal of Microbiology Research, 10(19), 654–661.

    CAS  Google Scholar 

  • Koukouraki, E., & Diamadopoulos, E. (2002). THM formation during chlorination of treated municipal wastewater. Water Science and Technology: Water Supply, 2, 235–242.

    CAS  Google Scholar 

  • Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Radecka, I. (2008). Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology, 104, 1516–1524.

    CAS  Google Scholar 

  • Kyambadde, J., Kansiime, F., Gumaelius, L., & Dalhammar, G. (2004). A comparative study of Cyperus papyrus and Miscanthidiumviolaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Research, 38, 475–485.

    CAS  Google Scholar 

  • Li, L., Li, Y., Biswas, D. K., Nian, Y., & Jiang, G. (2008). Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology, 99(6), 1656–1663.

    CAS  Google Scholar 

  • Lima, E., Guerra, R., Vinierga, M., Guzman, A., & Lara, V. (2012). Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Microporous and Mesoporous Materials, 147, 267.

    Google Scholar 

  • Lu, S., Gibb, S. W., & Cochrane, E. (2007). Effective removal of zinc ions from aqueous solutions using crab carapace biosorbent. Journal of Hazardous Materials, 149, 208–217.

    CAS  Google Scholar 

  • Martin, L., Théophile, F., Etienne, P. T., & Amougou, A. (2012). Removal of faecal bacteria and nutrients from domestic wastewater in a horizontal surface flow wetland vegetated with Echinochloa pyramidalis African. Journal of Environmental Science and Technology, 6(9), 337–345.

    Google Scholar 

  • Meharg, A. A., & Cairney, J. W. (1999). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research, 30, 69–112.

    Google Scholar 

  • Milenkovic, J., Hrenovic, J., Matijasevic, D., Niksic, M., & Rajic, N. (2017). Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environmental Science and Pollution Research, 24, 20273–20281.

    CAS  Google Scholar 

  • Mojiri, A., Aziz, H. A., Zaman, N. Q., Aziz, S. Q., & Zahed, M. A. (2014). Powdered ZELIAC augmented sequencing batch reactors (SBR) process for cotreatmentof landfill leachate and domestic wastewater. Journal Environmental Management, 139, 1–14.

    CAS  Google Scholar 

  • Mojiri, A., Ziyang, L., Tajuddin, R. M., Farraji, H., & Alifar, N. (2016). Co-treatment of landfill leachate and municipal wastewater using theZELIAC/zeolite constructed wetland system. Journal of Environmental Management, 166, 124–130.

    CAS  Google Scholar 

  • Mojiri, A., Ahmad, Z., Tajuddin, R. M., Arshad, M. F., & Gholami, A. (2017). Ammonia, phosphate, phenol, and copper (II) removal from aqueous solution by subsurface and surface flow constructed wetland. Environmental Monitoring and Assessment, 189, 337.

    Google Scholar 

  • Mthembu, M. S., Odinga, C. A., Swalaha, F. M., & Bux, F. (2013). Constructed wetlands: a future alternative wastewater treatment technology. African Journal of Biotechnology, 12, 4542–4553.

    Google Scholar 

  • Mustafa, A., Scholz, M., Harrington, R., & Carroll, P. (2009). Long-Term Performance of a Representative Integrated Constructed Wetland Treating Farmyard Runoff. Ecol. Eng., 35, 779–790.

    Google Scholar 

  • Mustapha, H. I., van Bruggen, J. J. A., & Lens, P. N. L. (2018). Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treatedpetroleum refinery wastewater in Kaduna. Nigeria, International Journal of Phytoremediation, 20(1), 44–53.

    CAS  Google Scholar 

  • Nguyen, V. A., Nguyen, M. P., Tonderski, K., Thi, H. D., & Bui, A. T. K. (2019). Design and performance of a coarse media, high hydraulicload polishingwetland for steel industry wastewater. Water Science and Technology, 89, 1.

    Google Scholar 

  • Pandey, V. C. (2012). Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicology and Environmental Safety, 82, 8–12.

    CAS  Google Scholar 

  • Penghe, W., Hui, Z., Jie, Z., Dehua, Z., Xiangxu, Z., Zhengjie, Z., Nasreen, J., Xin, L., & Shuqing, A. (2016). A hardy plant facilitates nitrogen removal via microbial communities in subsurface flow constructed wetlands in winter. Scientific Reports, 6. https://doi.org/10.1038/srep33600.

  • Papoyan, A., Piñeros, M., & Kochian, L. V. (2007). Plant Cd2+and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol, 175, 51–58.

    CAS  Google Scholar 

  • Perbangkhem, T., & Polprasert, C. (2010). Biomass production of Papyrus (Cyperus Papyrus) in constructed wetland treating low-strength domestic wastewater. Bioresource Technology, 101, 833–835.

    CAS  Google Scholar 

  • Ramesh, T., Gandhimathi, R., Joesun, J. H., & Nidheesh, P. V. (2013). Novel agricultural waste adsorbent, Cyperus rotundus, for removal of heavy metal mixtures from aqueous solutions. Environmental Engineering Science, 30. https://doi.org/10.1089/ees.2012.0192.

  • Reed SC, Crites RW, Middlebroods EJ (1995). Natural systems for waste management and treatment. 2nd edition. McGraw-Hill, Inc. p. 433.

  • Saad, M. B., Said, M. B., Sánchez, I. S., Morató, J., Bousselmi, L. and Ghrabi, A. (2019). Enhancement of rhizocompetence in pathogenic bacteria removal of a constructed wetland system. IWA Publishing, Water Sciences Technology.

  • Selvakumar, S., Manivasagan, R., & Chinnappan, K. (2013). Biodegradation and decolourization of textile dye wastewater using Ganodermalucidum. Biotech, 3, 71–79.

    Google Scholar 

  • Shaheen, M. N., & El Mahdy, M. E. (2019). Environmental monitoring of astrovirus and norovirus in Rosetta River Nile and El-Rahawy drain, Egypt. Water Supply, 19, 1381–1387.

    CAS  Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–116.

    CAS  Google Scholar 

  • Shingare, R. P., Nanekar, S. V., Thawale, P. R., Karthik, R., & Juwarkar, A. A. (2017). Comparative study on removal of enteric pathogens from domestic wastewater using Typha latifolia and Cyperus rotundus along with different substrate. International Journal of Phytoremediation, 19(10), 899–908.

    CAS  Google Scholar 

  • Shrivastava, A. K. (2009). A review on copper pollution and its removal from water bodies by pollution control techniques. Indian Journal of EnvironmentalProtection, 29, 552–560.

    CAS  Google Scholar 

  • Shuib, N., Baskaran, K., Davies, W. R., & Muthukumaran, S. (2011). Effluent quality performance of horizontal subsurface flow constructed wetlands using natural zeolite (escott). In International conference on environment science and engineering IPCBEE (Vol. 8).

  • Stefanakis, A.I., Tsihrintzis, V.A. (2008). Constructed wetland effluent quality improvement using zeolite and bauxite as filter media. AQUA 2008, water science and technology with emphasis on water & climate 16-19 october. ATHENS: Exhibition Center Helexpo Palace.

  • Stefanakis, A. I., & Tsihrintzis, V. A. (2012). Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of a pilot-scale vertical flow constructed wetlands. Chemical Engineering Journal, 181–182(2012), 416–430.

    Google Scholar 

  • Stefanakis, A., Akratos, C., Tsihrintzis, V.A., (2014). Vertical flow constructed wetlands: eco-engineering systems for wastewater and sludge treatment. Elsevier publisher. ISBN: 9780124046122.

  • Stevik, T. K., Aa, K., Ausland, G., & Hanssen, J. F. (2004). Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Research, 38, 1355–1367.

    CAS  Google Scholar 

  • Taamneh, Y., & Sharadqah, S. (2017). The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Applied Water Science, 7(4), 2021–2028.

    CAS  Google Scholar 

  • Thebo, A. L., Drechsel, P., Lambin, E. F., & Nelson, K. L. (2017). A global, spatial lyexplicit assessment of irrigated croplands influenced by urban wastewater flows. Environmental Research Letters. https://doi.org/10.1088/1748-9326/aa75d1.

  • Theophile, F., Sako, I. B., Martin, L. k., Fabrice, M. T., & Akoa, A. (2011). Potential of Cyperus Papyrus in yard-scale horizontal flow constructed wetlands for wastewater treatment in Cameroon Universal. Journal of Environmental Research and Technology, 1, 160–168.

    Google Scholar 

  • Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. Journal of the Total Environment, 407, 3958–3971.

    CAS  Google Scholar 

  • Villalobos, R. M., Zuñiga, J., Salgado, E., Schiappacasse, M. C., & Maggi, R. C. (2013). Constructed wetlands for domestic wastewater treatment in Mediterranean climate region in Chile. Environmental Biotechnology. https://doi.org/10.2225/vol16-issue4-fulltext-5.

  • Vymazal, J., Švehla, J., Kropfelova, L., & Chrastny’, V. (2007). Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the Total Environment, 380, 154–162.

    CAS  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685–700.

    CAS  Google Scholar 

  • WHO. (2006). World Health Organization guidelines for the safe use of wastewater, excreta and greywater, policy and regulatory aspects, Vol. 1. France: Policy and Regulatory Aspects, UNEP.

    Google Scholar 

  • Wrede, D., Taha, M., Miranda, A. F., Kadali, K., Stevenson, T., Ball, A. S., & Mouradov, M. (2014). A co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, Lipid Production and Wastewater Treatment. PLoS One. https://doi.org/10.1371/0113497.

  • Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). Development of constructed wetlands in performance intensifications for wastewater treatment:a nitrogen and organic matter targeted review. Water Research, 57C, 40–55.

    Google Scholar 

  • Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hub, Z., Liang, S., Fan, J., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource Technology, 175, 594–601.

    CAS  Google Scholar 

  • Xu, S. P., & Jaffé, P. R. (2006). Effects of plants on the removal of hexavalent chromium in wetland sediments. Journal of Environmental Quality, 35(1), 334–341.

    CAS  Google Scholar 

  • Yadav, A. K., Abbassi, R., Kumar, N., Satya, S., Sreekrishnan, T. R., & Mishra, B. K. (2012). The removal of heavy metals in wetland microcosms: effects of bed depth, plant species, and metal mobility. Chemical Engineering Journal, 211–212, 501–507.

    Google Scholar 

  • Yaghmaeian, K., & Jaafari, J. (2019). Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere., 217, 447–455.

    Google Scholar 

  • Yalcuk, A., & Ugurlu, A. (2009). Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresource Technology, 100, 2521–2526.

    CAS  Google Scholar 

  • Yeh, T. Y., Chou, C. C., & Pan, C. T. (2009). Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination, 249, 368–373.

    CAS  Google Scholar 

  • Zurita, F., De Anda, J., & Belmont, M. A. (2009). Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecological Engineering, 35, 861–869.

    Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Azab El-Liethy or Akebe Luther King Abia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussien, M.T.M., El-Liethy, M.A., Abia, A.L.K. et al. Low-Cost Technology for the Purification of Wastewater Contaminated with Pathogenic Bacteria and Heavy Metals. Water Air Soil Pollut 231, 400 (2020). https://doi.org/10.1007/s11270-020-04766-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04766-w

Keywords

Navigation