Skip to main content
Log in

Mobilization and Translocation of Subsurface Lead by Tithonia rotundifolia

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Phytoremediation is a cost-effective and relatively cleaner method for remediating contaminated areas using plants. Certain plants, including some sunflower species, have already been identified as potential phytoremediation candidates because of their ability to accumulate heavy metals. This study investigated the ability of Tithonia rotundifolia (red sunflower) to accumulate lead from lab-contaminated soils. T. rotundifolia was assessed as a candidate for phytoremediation of lead soils. The study also assessed whether the form (species) of lead as the source of contamination or whether arbuscular mycorrhizal fungi had effects on plant uptake of the metal. Results showed that T. rotundifolia was able to accumulate up to 33% of the lead from the contaminated soils making it a promising candidate for phytoremediation. The amount of lead taken up by the plant ranged from 0.1 to 1.2 mg/kg of plant biomass. The source of the contamination, either lead nitrate or lead carbonate, had a significant impact on the amount of lead that accumulated in the plant. The sunflowers grown in the lead nitrate treatment were able to accumulate significantly more lead than the sunflowers grown in the lead carbonate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adesodun, J. K., Atayese, M. O., Agbaje, T. A., Osadiaye, B. A., Mafe, O. F., & Soretire, A. A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water, Air, and Soil Pollution, 207, 195–201. https://doi.org/10.1007/s11270-009-0128-3.

    Article  CAS  Google Scholar 

  • Adewole, M. B., Sridhar, M. K. C., & Adeoye, G. O. (2010). Removal of heavy metals from soil polluted with effluents from a paint industry using Helianthus annuus L. and Tithonia diversifolia (Hemsl.) as influenced by fertilizer applications. Bioremediation Journal, 14, 169–179. https://doi.org/10.1080/10889868.2010.514872.

    Article  CAS  Google Scholar 

  • Andrade, S. A. L., Silveira, A. P. D., Jorge, R. A., de Abreu, M. F. (2008). Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. International Journal of Phytoremediation, 10, 1–14.

  • Assche, F. V., & Lijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13(3), 195–206.

    Article  Google Scholar 

  • Bailey, E. A., Gray, J. E., & Theodorakos, P. M. (2002). Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska, USA. Geochemistry: exploration, environment, analysis, 2, 275–285.

    CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Burt, E.D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860–865.

  • Chang-Cong. L., L.Tao, Y.P. Xiao, M.J.Liu, H.B. Zhang and Z.W. Zhao. 2009. Effects of Inoculation with Arbuscular Mycorrhizal Fungi on Maize Grown in Multi-metal contaminated soils. International Journal of Phytoremediation 11, 692–703.

  • Cutright, T., Gunda, N., & Kurt, F. (2010). Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. International Journal of Phytoremediation, 12, 562–573.

    Article  CAS  Google Scholar 

  • Devkota, B., & Schmidt, G. H. (2000). Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agriculture, ecosystems and environments: volume, 78(2000), 85–91.

    Article  CAS  Google Scholar 

  • Feng, X., & Qiu, G. (2008). Mercury pollution in Guizhou, southwestern China—an overview. Science of the Total Environment, 400, 227–237.

    Article  CAS  Google Scholar 

  • Forte, J., & Mutiti, S. (2017). Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water, Air, & Soil Pollution, 228(2), 77.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian Journal on Energy and Environment, 6(4), 18.

    Google Scholar 

  • Gray, J. E., et al. (2014). Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy. Environmental Geochemistry and Health, 36(1), 145–157.

    Article  CAS  Google Scholar 

  • Gucwa-Przepiora, E., Blaszkowski, J., Renata, K., Malkowski, L., & Malkowski, E. (2013). Arbuscular mycorrhiza of Deschampsia cespitosa (Poaceae) at different soil depths in highly metal-contaminated site in southern Poland. Acta Societatis Botanicorum Poloniae, 82(4), 251–258.

    Article  Google Scholar 

  • Hamvumba, R., Mataa, M., & Mweetwa, A. M. (2014). Evaluation of sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L.) and Chinese cabbage (Brassica chinensis) for phytoremediation of lead contaminated soils. Environment and Pollution, 3, 65–73. https://doi.org/10.5539/ep.v3n2p65.

    Article  CAS  Google Scholar 

  • Heikens, A., Peijinenburg, W. J. G. M., & Hendriks, A. J. (2001). Bioaccumulation of heavy metals in terrestrial invertebrates. Environmental Pollution, 113(3), 385–393.

    Article  CAS  Google Scholar 

  • Higueras, P., Oyarzun, R., Biester, H., Lillo, J., & Lorenzo, S. (2003). A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. Journal of Geochemical Exploration, 80, 95–104.

    Article  CAS  Google Scholar 

  • Jadia, C. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: recent techniques. African Journal of Biotechnology, 8, 921–928.

    CAS  Google Scholar 

  • Joner, E.J., Briones, R., and Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil, 226, 227–234.

  • Kaldorf, M., Kuhn, A.J., Schroder, W.H., Hildebrandt, U., and Bothe, H. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718–728.

  • Kapungwe, E. M. (2011). Industrial land use and heavy metal contaminated wastewater used for irrigation in periurban Zambia. Singapore Journal of Tropical Geography, 32, 71–84.

    Article  Google Scholar 

  • Keaton, C. M. (1937). The influence of lead compounds on the growth of barley. Soil Science, 43, 401–411.

    Article  CAS  Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41(1–2), 197–207.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals. Journal of Environmental Quality, 31(1), 109–120.

    CAS  Google Scholar 

  • Leteinturier, B., Laroche, J., Matera, J., & Malaisse, F. (2001). Reclamation of lead/zinc processing wastes at Kabwe, Zambia: a phytogeochemical approach. South African Journal of Science, 97, 624–627.

    CAS  Google Scholar 

  • Mukhtar, S., Bhatti, H. N., Khalid, M., Haq, U. M. A., & Shahzad, S. M. (2010). Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pakistan Journal of Botany, 42, 4017–4026.

    CAS  Google Scholar 

  • Muoghalu, J.I. (2007). Growth, reproduction and resource allocation of Tithonia diversifolia and Tithonia rotundifolia.

    Google Scholar 

  • Pal. S. (2011). Arbuscular Mycorrhiza: Useful Tool for Heavy Metal Bioremediation. International Journal of Agriculture, Environment and Biotechnology 4, 397–399.

  • Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58-73. Weed Research, 48, 157–162.

    Google Scholar 

  • Pelfrêne, A., Douay, F., Richard, A., Roussel, H., & Girondelot, B. (2013). Assessment of potential health risk for inhabitants living near a former lead smelter. Part 2: site-specific human health risk assessment of Cd and Pb contamination in kitchen gardens. Environmental Monitoring and Assessment, 185, 2999–3012. https://doi.org/10.1007/s10661-012-2767-x.

    Article  CAS  Google Scholar 

  • Pidlisnyuk, V., Stefanovska, T., Lewis, E. E., Erickson, L. E., & Davis, L. C. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Critical Reviews in Plant Sciences, 33(1), 1–19.

    Article  Google Scholar 

  • Rahman, M. M., Azirun, S. M., & Boyce, A. N. (2013). Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PLoS One, 8, 1–9. https://doi.org/10.1371/journal.pone.0062941.

    Article  CAS  Google Scholar 

  • Rivelli, A. R., Maria, S. D., Puschenreiter, M., & Gherbin, P. (2012). Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. International Journal of Phytoremediation, 14, 320–334. https://doi.org/10.1080/15226514.2011.620649.

    Article  CAS  Google Scholar 

  • Romeiro, S., Lagôa, A. M., Furlani, P. R., Abreu, C. A. D., Abreu, M. F. D., & Erismann, N. M. (2006). Lead uptake and tolerance of Ricinus communis L. Brazilian Journal of Plant Physiology, 18(4), 483–489.

    Article  CAS  Google Scholar 

  • Roux, K. E., & Marra, P. P. (2007). The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Archives of Environmental Contamination and Toxicology, 53(2), 261–268.

    Article  CAS  Google Scholar 

  • Saad, E. H., Hijri, M., & St-Arnaud, M. (2013). Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. Biotechnology for the Bio and Green Economy, 780–778.

  • Seregin, I. V., & Ivanov, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48(4), 523–544.

    Article  CAS  Google Scholar 

  • Sewalem, N., Elfeky, S., & El-Shintinawy, F. (2014). Phytoremediation of lead and cadmium contaminated soils using sunflower plant. Journal of Stress Physiology and Biochemistry, 10, 122–134.

    Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35–52.

    Article  CAS  Google Scholar 

  • Solhi, M., Shareatmadari, H., & Hajabbasi, M. A. (2005). Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus. Water, Air, and Soil Pollution, 167, 59–71.

    Article  CAS  Google Scholar 

  • Soliman, M. M., Haggag, A. A., & El-Shazly, M. M. (2017). Assessment of grasshopper diversity along a pollution gradient in the Al–Tebbin region, South Cairo, Egypt. Journal of entomology and zoology studies 2017, 5(1), 298–306.

    Google Scholar 

  • Tembo, B. D., Sichilongo, K., & Cernak, J. (2006). Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere, 63, 497–501. https://doi.org/10.1016/j.chemosphere.2005.08.002.

    Article  CAS  Google Scholar 

  • Verbruggen, E., Van Der, H. E. I. J. D. E. N. M. G., Weedon, J. T., Kowalchuk, G. A., & Röling, W. F. (2012). Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology, 21(10), 2341–2353.

    Article  Google Scholar 

  • Zhuang, P., Zou, H., & Shu, W. (2009). Biotransfer of heavy metals along a soil-plant-insect- chicken food chain: field study. Journal of Environmental Sciences, 21(2009), 849–853.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Biological and Environmental Sciences, Mentored Undergraduate Research and Creative Endeavors summer grant, and the Coverdell Chair Public Policy Student Research Scholar Program at Georgia College and State University for funding this project. This work would not have been successfully completed without the help of the following people: Dr. Caralyn Zehnder, Jenna Forte, Allie Bankston, Taylor Upole, and Dr. Alice Mweetwa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Mutiti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutiti, S., Corley, M. & Tembo, M. Mobilization and Translocation of Subsurface Lead by Tithonia rotundifolia. Water Air Soil Pollut 231, 399 (2020). https://doi.org/10.1007/s11270-020-04748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04748-y

Keywords

Navigation