Skip to main content

Advertisement

Log in

Remarkable Removal of Antibiotic-Resistant Bacteria During Dairy Wastewater Treatment Using Hybrid Full-scale Constructed Wetland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Effective treatment of dairy wastewater with efficient removal of antibiotic-resistant bacteria (ARB) is a great challenge for reuse of treated wastewater. Antibiotics are widely used in human and veterinary medicine, and antibiotics misuse has led to occurrence and spread of antibiotic-resistant bacteria (ARB). Reuse of treated wastewater for irrigation is a solution to deal with water shortage in developing countries. One of the major problems of treated wastewater reuse is the possible presence of ARB. Removal of ARB from dairy wastewater using a full-scale hybrid constructed wetland (CW) at Miyagi Prefecture, Japan, was studied. It was well-defined that hybrid CW caused a complete removal of ampicillin-, gentamicin-, kanamycin-, and streptomycin-resistant bacteria resulting in an effluent free of these resistant strains. Additionally, a significant decrease in the number of vancomycin-RB was definite with a final 3.2 log unit decrease in the effluent. This study addressed the remarkable efficiency of a full-scale hybridized CW in Kawatabi, Field Science Center, Tohoku University. It decreased the output of organic matter (COD), total suspended solids (SS), and ammonia-nitrogen. The performance of CW for the removal ARB from dairy wastewater was efficient to minimize the release of these contaminants into the environment and avoid the spread of antibiotic resistance with safe discharge and reuse of treated wastewater. Finally, the current study represents the first report about the assessment of ARB removal during treatment of dairy wastewater using CW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, C., Wang, Y., Loftin, K., & Meyer, M. (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 128, 253–260.

    CAS  Google Scholar 

  • Akratos, C. S., & Tsihrintzis, V. A. (2007). Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 2(9), 173–191.

    Google Scholar 

  • Auerbach, E. A., Seyfried, E. E., & McMahon, K. D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 41, 1143–1151.

    CAS  Google Scholar 

  • Bai, X. H., Ma, X. L., Xu, F. M., Li, J., Zhang, H., & Xiao, X. (2015). The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Science of the Total Environment, 533, 24–31.

    CAS  Google Scholar 

  • Barceló, D., & Petrovic, M. (2008). Emerging contaminants from industrial and municipal waste (pp. 199–214). Berlin: Springer.

    Google Scholar 

  • Bassetti, M., Temperoni, C., & Astilean, A. (2013). Review: New antibiotics for bad bugs: Where are we? Annals of Clinical Microbiology and Antimicrobials, 12, 1–15.

    Google Scholar 

  • Ben, W., Wang, J., Cao, R., Yang, M., Zhang, Y., & Qiang, Z. (2017). Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere, 172, 392–398.

    CAS  Google Scholar 

  • Berglund, B., Khan, G. A., Weisner, S. E. B., Ehde, P. M., Fick, J., & Lindgren, P.-E. (2014). Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Science of the Total Environment, 476–477, 29–37.

    Google Scholar 

  • Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicology and Environmental Safety, 91, 1–9.

    CAS  Google Scholar 

  • Boxall, A. B. A., Fogg, L. A., Kay, P., Blackwell, P. A., Pemberton, E. J., & Croxford, A. (2003). Prioritisation of veterinary medicines in the UK environment. Toxicology Letters, 142, 207–218.

    CAS  Google Scholar 

  • Breitholtz, M., Näslund, M., Stråe, D., Borg, H., Grabic, R., & Fick, J. (2012). An evaluation of free water surface wetlands as tertiary sewage treatment of micro-pollutants. Ecotoxicology and Environmental Safety, 78, 63–71.

    CAS  Google Scholar 

  • Brix, H. (2005). The use of vertical flow constructed wetlands for on-site treatment of domestic waste water: New Danish guidelines. Ecological Engineering, 25, 491–500.

    Google Scholar 

  • Brooks, J. P., Maxwell, S. L., Rensing, C., Gerba, C. P., & Pepper, I. L. (2007). Occurrence of antibiotic-resistant bacteria and endotoxin associated with the land application of biosolids. Canadian Journal of Microbiology, 53, 616–622.

    CAS  Google Scholar 

  • Bulc, T. G. (2006). Long term performance of a constructed wetland for landfill leachate treatment. Ecological Engineering, 26, 365–374.

    Google Scholar 

  • Calderon, C. B., & Sabundayo, B. P. (2007). Antimicrobial classifications: Drugs for bugs. In R. Schwalbe, L. Steele-Moore, & A. C. Goodwin (Eds.), Antimicrobial susceptibility testing protocols. Taylor and Frances group: CRC Press ISBN 978-0-8247-4100-6.

    Google Scholar 

  • Cantas, L., Shah, S. Q. A., Cavaco, L. M., Manaia, C. M., Walsh, F., Popowska, M., Garelick, H., Bürgmann, H., & Sørum, H. (2013). A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Frontiers in Microbiology, 4, 96.

    CAS  Google Scholar 

  • Chen, H., & Zhang, M. M. (2013). Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China. Environmental Science & Technology, 47, 8157–8163.

    CAS  Google Scholar 

  • Cooper, P. F. (2001). Nitrification and denitrification in hybrid constructed wetlands systems. In J. Vymazal (Ed.), Transformations on nutrients in natural and constructed wetlands (pp. 257–270). Leiden: Back- huys Publishers.

    Google Scholar 

  • Czekalski, N., Berthold, T., Caucci, S., Egli, A., & Bürgmann, H. (2012). Increased levels of multi-resistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology, 3(106), 1–18.

    Google Scholar 

  • Davis, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74, 417–433.

    Google Scholar 

  • de Luca, G., Sacchetti, R., Leoni, E., & Zanetti, F. (2013). Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: Implications to water reuse. Bioresource Technology, 129, 526–531.

    Google Scholar 

  • Du, J., Ren, H., Geng, J., Zhang, Y., Xu, K., & Ding, L. (2014). Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environemental Science and Pollution Research, 21, 7276–7284.

    CAS  Google Scholar 

  • Faulkner, S. P., Richardson C. J. (1989). Physical and chemical characteristics of freshwater wetland soils. In D. A. Hammer (Ed.), Constructed wetlands for wastewater treatment: municipal, industrial, and agricultural. Chelsea: Lewis Publishers, 41.

  • Ferreira da Silva, M., Tiago, I., Verissimo, A., Boaventura, R. A., Nunes, O. C., & Manaia, C. M. (2006). Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiology Ecology, 55(2), 322–329.

    CAS  Google Scholar 

  • Finley, S., Suzelle Barrington, S., & Lyew, D. (2009). Reuse of domestic greywater for the irrigation of food crops. Water, Air, and Soil Pollution, 199(1–4), 235–245.

    CAS  Google Scholar 

  • Fluit, A. C., Jones, M. E., Schmitz, F. J., Acar, J., Gupta, R., & Verhoef, J. (2000). Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY anti- microbial surveillance program, 1997 and 1998. Clinical Infectious Diseases, 30, 454–460.

    CAS  Google Scholar 

  • Gallert, C., Fund, K., & Winter, J. (2005). Antibiotic resistance of bacteria in raw and biologically treated sewage and in groundwater below leaking sewers. Applied Microbiology and Biotechnology, 69(1), 106–112.

    CAS  Google Scholar 

  • Galvin, S., Boyle, F., Hickey, P., Vellinga, A., Morris, D., & Cormican, M. (2010). Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Applied and Environmental Microbiology, 4772–4779.

  • Guardabassi, L., Wong, D. M. L. F., & Dalsgaard, A. (2002). The effects of tertiary waste- water treatment on the prevalence of antimicrobial resistant bacteria. Water Research, 36, 1955–1964.

    CAS  Google Scholar 

  • Hayward, J. L., Jackson, A. J., Yost, C. K., Hansen, L. T., & Jamieson, R. C. (2018). Fate of antibiotic resistance genes in two Arctic tundra wetlands impacted by municipal wastewater. Science of the Total Environment, 642(2018), 1415–1428.

    CAS  Google Scholar 

  • Hijosa-Valsero, M., Fink, G., Schlüsener, M. P., Sidrach-Cardona, R., Martín-Villacorta, J., Ternes, T., et al. (2011). Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 83(5), 713–719.

    CAS  Google Scholar 

  • Hiller, C. X., Hübner, U., Fajnorova, S., Schwartz, T., & Drewes, J. E. (2019). Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. Science of the Total Environment, 685, 596–608.

    CAS  Google Scholar 

  • Hsu, C.-B., Hsieh, H.-L., Yang, L., Wu, S.-H., Chang, J.-S., Hsiao, S.-C., Su, H.-C., Yeh, C.-H., Ho, Y.-S., & Lin, H.-J. (2011). Biodiversity of constructed wetlands for wastewater treatment. Ecological Engineering, 37, 1533–1545.

    Google Scholar 

  • Ingerslev, F., & Halling-Sørensen, B. (2000). Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 19, 2467–2473.

    CAS  Google Scholar 

  • Iversen, A., Kühn, I., Rahman, M., Franklin, A., Burman, L. G., Olsson-Liljequist, B., Torell, E., & Möllby, R. (2004). Evidence for transmission between humans and the environment of a nosocomial strain of Enterococcus faecium. Environmental Microbiology, 6, 55–59.

    Google Scholar 

  • Iwane, T., Urase, T., & Yamamoto, K. (2001). Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Science and Technology, 43(2), 91–99.

    CAS  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2008). Treatment wetlands (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kadlec, R.H., Wallace, S. (2009). Treatment wetlands, 2nd edn. Boca Raton: CRC Press, p 1048.

  • Kinsley, C. B., Crolla, A. M., Kuyucak, N., Zimmer, M., & Lafleche, A. (2006). Nitrogen dynamics in a constructed wetland system treating landfill leachate. In Proceedings of the 10th International Conference on Wetland Systems for Water Pollution Control (pp. 295–305). Lisbon: MAOTDR.

    Google Scholar 

  • Laber, J., Haberl, R., & Langergraber, G. (2003). Treatment of hospital wastewater with a 2-stage constructed wetland system. In R. Haberl & G. Langergraber (Eds.), Achievements and prospects of phytoremediation in Europe (p. 85). Vienna: University of Natural Resources and Applied Life Sciences (book of abstracts).

    Google Scholar 

  • Larsson, D. G., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755.

    CAS  Google Scholar 

  • Li, W., Gao, L., Shi, Y., Liu, J., & Cai, Y. (2015). Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China. Environmental Science: Processes & Impacts, 17, 1611–1619. https://doi.org/10.1039/C5EM00216H.

    Article  CAS  Google Scholar 

  • Lin, Y. F., Jing, S. R., Lee, D. Y., & Wang, T. W. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209, 169–184.

    CAS  Google Scholar 

  • Marti, E., Monclús, H., Jofre, J., Rodriguez-Roda, I., Comas, J., & Balcázar, J. L. (2011). Removal of microbial indicators from municipal wastewater by a membrane bioreactor (MBR). Bioresource Technology, 102(8), 5004–5009.

    CAS  Google Scholar 

  • Masi, F., & Martinuzzi, N. (2007). Constructed wetlands for the Mediterranean countries: Hybrid systems for water reuse and sustainable sanitation. Desalination, 215, 44–55.

    CAS  Google Scholar 

  • Meers, E., Tack, F. M. G., Tolpe, I., & Michels, E. (2008). Application of a full-scale constructed wetland for tertiary treatment of piggery manure: Monitoring results. Water, Air, and Soil Pollution, 193(1–4), 15–24.

    CAS  Google Scholar 

  • Melián, J. H., Rodríguez, A. M., Arana, J., Díaz, O. G., & Henríquez, J. G. (2010). Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological Engineering, 36, 891–899.

    Google Scholar 

  • Mitsch, W. J., Gosselink, J. G. (2007). Wetlands. 4th ed. Hoboken: John Wiley & Sons, Inc.

  • Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45, 681–693.

    CAS  Google Scholar 

  • Nakano, K., Nakamura, K., Yano, T., & Nishimura, O. (2014). First 3 years of performance in a planted and unplanted five-stage vertical flow constructed wetland treating milking parlor wastewater. Journal of Water and Environment Technology, 12, 177–189.

    Google Scholar 

  • Novo, A., & Manaia, C. M. (2010). Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Applied Microbiology and Biotechnology, 87(3), 1157–1166.

    CAS  Google Scholar 

  • O’Hogain, S. (2003). The design, operation and performance of a municipal hybrid reed bed treatment system. Water Science and Technology, 48(5), 119–126.

    Google Scholar 

  • Osińska A., Korzeniewska E., Harnisz M., Niestępski S., and Jachimowicz P. (2019). The occurrence of antibiotic-resistant bacteria, including Escherichia coli, in municipal wastewater and river water. E3S Web of Conferences 100.

  • Pant, H. K., Reddy, K. R., & Lemon, E. (2001). Phosphorus retention capacity of root bed media of sub-surface flow constructed wetlands. Ecological Engineering, 17, 345–355.

    Google Scholar 

  • Peterson, L. R. (2008). Currently available antimicrobial agents and their potential for use as monotherapy. Clinical Microbiology and Infection, 14(6), 30–45.

    CAS  Google Scholar 

  • Reeb, G., & Werckmann, M. (2005). First performance data on the use of two pilot-constructed wetlands for highly loaded non-domestic sewage. In J. Vymazal (Ed.), Natural and constructed wetlands: Nutrients, metals and management (pp. 43–51). Leiden: Backhuys Publishers.

    Google Scholar 

  • Revitt, D. M., Shutes, R. B. E., Jones, R. H., Forshaw, M., & Winter, B. (2004). The performance of vegetative treatment systems for highway runoff during dry and wet conditions. Science of the Total Environment, 334–335, 261–270.

  • Rijal, G. K., Zmuda, J. T., Gore, R., Abedin, Z., Granato, T., Kollias, L., & Lanyon, R. (2009). Antibiotic resistant bacteria in wastewater processed by the Metropolitan Water Reclamation District of Greater Chicago system. Water Science and Technology, 59(12), 2297–2304.

    CAS  Google Scholar 

  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360.

    CAS  Google Scholar 

  • Rodríguez, C., Lang, L., Wang, A., Altendorf, K., García, F., & Lipski, A. (2006). Lettuce for human consumption collected in Costa Rica contains complex communities of culturable oxytetracycline-and gentamicin-resistant bacteria. Applied and Environmental Microbiology, 72, 5870–5876.

    Google Scholar 

  • Rossolini, G. M., Arena, F., Pecile, P., & Pollini, S. (2014). Update on the antibiotic resistance crisis. Current Opinion in Pharmacology, 18, 56–60.

    CAS  Google Scholar 

  • Santos, F., Almeida, C. M. R., Ribeiro, I., Mucha A. P. (2019). Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater. Ecological Engineering, 129, 45–53.

  • Scheurer, M., Heß, S., Lüddeke, F., Sacher, F., Güde, H., Löffler, H., & Gallert, C. (2015). Removal of micropullants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overflow. Environmental Science: Processes and Impacts, 1, 186–196.

    Google Scholar 

  • Scholz, M., Harrington, R., Carroll, P., & Mustafa, A. (2007). The integrated constructed wetlands (ICW) concept. Wetlands, 27, 337–354.

    Google Scholar 

  • Schulz, R., & Peall, S. K. (2001). Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa. Environmental Science & Technology, 35, 422–426.

    CAS  Google Scholar 

  • Servais, P., & Passerat, J. (2009). Antimicrobial resistance of fecal bacteria in waters of the Seine river watershed (France). Science of the Total Environment., 408, 365–372.

    CAS  Google Scholar 

  • Sigala, J., & Unc, A. (2012). A PCR-DGGE approach to evaluate the impact of wastewater source on the antibiotic resistance diversity in treated wastewater effluent. Water Science and Technology, 65(7), 1323–1331.

    CAS  Google Scholar 

  • Song, Z., Zheng, Z., Li, J., Sun, X., Han, X., Wang, W., & Xu, M. (2006). Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecological Engineering, 26, 272–282.

    Google Scholar 

  • Soroko, M. (2005). Treatment of wastewater from small slaughterhouse in hybrid constructed wetlands system. In I. Toczyłowska & G. Guzowska (Eds.), Proceedings of the Workshop Wastewater Treatment in Wetlands. Theoretical and Practical Aspects (pp. 171–176). Gdansk: Gdańsk University of Technology Printing Office.

    Google Scholar 

  • Stoll, C., Sidhu, J. P. S., Tiehm, A., & Toze, S. (2012). Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environmental Science & Technology, 46, 9716–9726.

    CAS  Google Scholar 

  • Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R. A., & Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22(2003), 93–117.

    CAS  Google Scholar 

  • Tada, C., Ikeda, N., Nakamura, S., Oishi, R., Chigira, J., Yano, T., Nakano, K., & Nakai, Y. (2011). Animal wastewater treatment using constructed wetland. Symposium Paper JIFS, 8(41), 47.

    Google Scholar 

  • Um, M. M., Barraud, O., Kérourédan, M., Gaschet, M., Stalder, T., Oswald, E., Dagot, C., Ploy, M. C., Brugère, H., & Bibbal, D. (2016). Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia Coli strains in adult cattle and veal calf slaughter- house effluents highlighted different risks for public health. Water Research, 88, 30–38.

    CAS  Google Scholar 

  • Vymazal, J. (1999). Nitrogen removal in constructed wetlands with horizontal sub-surface flow-can we determine the key process? In J. Vymazal (Ed.), Nutrient cycling and retention in natural and constructed wetlands (pp. 1–17). Leiden: Backhuys Publishers.

    Google Scholar 

  • Vymazal, J. (2005). Constructed wetlands with horizontal sub-surface flow and hybrid systems for wastewater treatment. Ecological Engineering, 25, 478–490.

    Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment., 380, 48–65.

    CAS  Google Scholar 

  • Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science and Technology, 45(1), 61–69.

  • Vymazal, J., & Kröpfelová, L. (2008). Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Dordrecht: Springer.

    Google Scholar 

  • Wagner, M., & Loy, A. (2002). Bacterial community composition and function in sewage treatment systems. Current Opinion in Biotechnology, 13, 218–227.

    CAS  Google Scholar 

  • WHO, (2014) Antimicrobial Resistance: global report on surveillance. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf (05/04/2016).

  • Wijesekara, P. N. K., Kumbukgolla, W. W., Jayaweera, J. A. A. S., & Rawat, D. S. (2017). Review on usage of vancomycin in livestock and humans: Maintaining its efficacy, prevention of resistance and alternative therapy. Veterinary Sciences, 4, 6.

    Google Scholar 

  • Winkler, G., Fischer, R., Krebs, P., Thompson, A., & Cartmell, E. (2007). Mass flow balances of triclosan in rural wastewater treatment plants and the impact of biomass parameters on the removal. Engineering in Life Sciences, 7, 42–51.

    CAS  Google Scholar 

  • Wu, S., Carvalho, P. N., Müller, J. A., Manoj, V. R., & Dong, R. (2016). Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Science of the Total Environment, 541, 8–22.

    CAS  Google Scholar 

  • Wu, H., Zhang, J., Ngo, H. H., Guo, W., & Liang, S. (2017). Evaluating the sustainability of free water surface flow constructed wetlands: Methane and nitrous oxide emissions. Journal of Cleaner Production, 147, 152–156.

    CAS  Google Scholar 

  • Yang, L. D., Hu, J., Ren, L., Zhang, Y., & Li, K. (2008). Determination and fate of oxytetracycline related compounds in oxytetracycline production wastewater and the receiving river. Environmental Toxicology and Chemistry, 27, 80–86.

    Google Scholar 

  • Yuan, Q. B., Guo, M. T., & Yang, J. (2014). Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant. Environmental Science: Processes & Impacts, 16, 1930–1937.

    CAS  Google Scholar 

  • Zhang, X. X., & Zhang, T. (2011). Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environmental Science & Technology, 45(7), 2598–2604.

    CAS  Google Scholar 

  • Zhang, C., Ning, K., Zhang, W., Guo, Y., Chen, J., & Liang, C. (2013). Determination and removal of antibiotics in secondary effluent using a horizontal subsurface flow constructed wetland. Environmental Science: Processes & Impacts, 15, 709–714.

    CAS  Google Scholar 

Download references

Funding

This study received support from the Missions Sector, Ministry of Higher Education, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosnia S. Abdel-Mohsein.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Mohsein, H.S., Feng, M., Fukuda, Y. et al. Remarkable Removal of Antibiotic-Resistant Bacteria During Dairy Wastewater Treatment Using Hybrid Full-scale Constructed Wetland. Water Air Soil Pollut 231, 397 (2020). https://doi.org/10.1007/s11270-020-04775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04775-9

Keywords

Navigation