Skip to main content
Log in

Qubit coherence effects in a RbCl quantum well with asymmetric Gaussian confinement potential and applied electric field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We theoretically investigate the coherent time of a single qubit in a RbCl quantum well (QW) with asymmetric Gaussian confinement potential (AGCP) using the Pekar-type variational method. Additionally, we utilize Fermi’s golden rule to consider strong coupling between electrons and longitudinal optical phonons in the QW with an electric field applied. The results show that the coherence time changes with AGCP QW’s height, height of the QW, polaron radius and electric field. Moreover, we also show that the coherence time is minimized to \( \tau = 412.0\;{\text{ps}} \) in a confinement potential range \( R = 0.19\;{\text{nm}} \). Thus we conclude that these tunable parameters of the QW are vital for adjusting the coherence time and deciding the stability of the qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I.A. Akimov, T. Godde, K.V. Kavokin et al., Phys. Rev. B 95, 155303 (2017)

    Article  ADS  Google Scholar 

  2. M.A. Yeranosyan, A.L. Vartanian, K.A. Vardanyan, Phys. E 75, 330 (2016)

    Article  Google Scholar 

  3. C. Faugeras, M. Orlita, S. Deutchlander et al., Phys. Rev. B 80, 073303 (2009)

    Article  ADS  Google Scholar 

  4. J.C. Abadillo-Uriel, M.J. Calderón, Phys. Lett. A 372, 7081 (2008)

    Article  Google Scholar 

  5. X. Chen, O. Keller, Phys. Rev. B 55, 15706 (1997)

    Article  ADS  Google Scholar 

  6. A. Hernández-Cabrera, P. Aceituno, F.T. Vasko, Phys. Rev. B 67, 045304 (2003)

    Article  ADS  Google Scholar 

  7. J. Jung, O. Keller, Phys. Rev. A 98, 053825 (2018)

    Article  ADS  Google Scholar 

  8. Y. Sun, X.J. Miao, Z.H. Ding et al., J. Semicond. 38, 042002 (2017)

    Article  ADS  Google Scholar 

  9. J.L. Xiao, Int. J. Theor. Phys. 55, 147 (2016)

    Article  Google Scholar 

  10. C.Y. Cai, C.L. Zhao, J.L. Xiao, Commun. Theor. Phys. 63, 159 (2015)

    Article  ADS  Google Scholar 

  11. W. Xiao, B. Qi, J.L. Xiao, J. Low Temp. Phys. 179, 166 (2015)

    Article  ADS  Google Scholar 

  12. J.L. Xiao, Int. J. Theor. Phys. 55, 147 (2015)

    Article  Google Scholar 

  13. L.D. Landau, S.I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946)

    Google Scholar 

  14. S.I. Pekar, M.F. Deigen, Zh. Eksp. Teor. Fiz. 18, 481 (1948)

    Google Scholar 

  15. S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    MATH  Google Scholar 

  16. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  17. A.J. Fotue, M.F.C. Fobasso, S.C. Kenfack, Eur. Phys. J. Plus 131, 205 (2016)

    Article  Google Scholar 

  18. Z.W. Wang, J.L. Xiao, Acta Phys. Sin. 56, 241 (2007)

    Google Scholar 

  19. X.J. Ma, J.L. Xiao, Opt. Quant. Electron. 50, 144 (2018)

    Article  Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Pergamon Press, London, 1987)

    Google Scholar 

  21. J.L. Xiao, Superlatt. Microstruct. 90, 308 (2016)

    Article  ADS  Google Scholar 

  22. J.T. Devreese, Polarons in Ionic Crystals and Polar Semiconductors (North-Holland Publ. Co., Amsterdam, 1972)

    Google Scholar 

  23. B. Hackens, S. Faniel, C. Gustin, X. Wallart, S. Bollaert, A. Cappy, V. Bayot, Phys. Rev. Lett. 94, 146802 (2005)

    Article  ADS  Google Scholar 

  24. J. Hackmann, P. Glasenapp, A. Greilich, M. Bayer, F.B. Anders, Phys. Rev. Lett. 115, 207401 (2015)

    Article  ADS  Google Scholar 

  25. X.Z. Yuan, K.D. Zhu, W.S. Li, Eur. Phys. J. D 31, 499 (2004)

    Article  ADS  Google Scholar 

  26. J. Wiersig, Phys. Status Solidi B 248, 883 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The subject is supported by Natural Science Foundation of China (No. 11464033) and Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No. 2017MS (LH) 0107

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sun.

Appendix

Appendix

Acorrding to trial ground and first excited state wavefunctions of electron and phonon system (polaron)

$$ \varphi_{0} = \pi^{{ - \frac{{3}}{4}}} \lambda_{0}^{{\frac{{3}}{2}}} \exp \left[ { - \frac{{\lambda_{0}^{2} r^{2} }}{2}} \right]\left| {0_{ph} } \right\rangle , $$
(A1)
$$ \varphi_{1} = \left( {\frac{{\pi^{3} }}{4}} \right)^{{ - \frac{{1}}{4}}} \lambda_{1}^{{\frac{{5}}{2}}} r\cos \theta \exp \left( { - \frac{{\lambda_{1}^{2} r^{2} }}{2}} \right)\exp \left( { \pm i\phi } \right)\left| {0_{ph} } \right\rangle , $$
(A2)

we can calculate the ground and first-exited energies of polaron. Form (A1) and (A2), we also choose trial ground and first excited state wavefunctions of electron \( \left| 0 \right\rangle = \pi^{{ - \frac{{3}}{4}}} \lambda_{0}^{{\frac{{3}}{2}}} \exp \left[ { - \frac{{\lambda_{0}^{2} r^{2} }}{2}} \right] \) and \( \left| 1 \right\rangle = \left( {\frac{{\pi^{3} }}{4}} \right)^{{ - \frac{{1}}{4}}} \lambda_{1}^{{\frac{{5}}{2}}} r\cos \theta \exp \left( { - \frac{{\lambda_{1}^{2} r^{2} }}{2}} \right)\exp \left( { \pm i\phi } \right) \) with \( \left\langle 0 \right.\left| 0 \right\rangle = 1 \), \( \left\langle 1 \right.\left| 1 \right\rangle = 1 \), \( \left\langle 0 \right.\left| 1 \right\rangle = 0 \).

For a QW with AGCP, these energies can be expressed as:

$$ \begin{aligned} E_{0} & = \left( {\varphi_{0} ,U^{ - 1} HU\varphi_{0} } \right) \\ & = \frac{{3\hbar^{2} }}{4m}\lambda_{0}^{2} - V_{0} \left( {1 + \frac{{1}}{{2\lambda_{0}^{2} R^{2} }}} \right)^{{ - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} - \frac{{\sqrt \pi e^{ * } }}{{2\lambda_{0} }}F - \frac{\sqrt 2 }{\sqrt \pi }\alpha \hbar \omega_{LO} \lambda_{0} r_{0} , \\ \end{aligned} $$
(A3)
$$ \begin{aligned} E_{1} & = \left( {\varphi_{1} ,U^{ - 1} HU\varphi_{1} } \right) \\ & = \frac{{5\hbar^{2} }}{4m}\lambda_{1}^{2} - V_{0} \left( {1 + \frac{{1}}{{2\lambda_{1}^{2} R^{2} }}} \right)^{{ - \frac{{3}}{2}}} - \frac{{\sqrt \pi e^{ * } }}{{2\lambda_{1} }}F - \frac{3\sqrt 2 }{4\sqrt \pi }\alpha \hbar \omega_{LO} \lambda_{1} r_{0} . \\ \end{aligned} $$
(A4)

Therefore, the energy-level separation is written as

$$ \Delta E = E_{1} - E_{0} $$
(A5)

Appling Eqs. (A1), (A2) and (A5), we can obtain the coherence time.

Based on the electric dipole approximation and FGR [21], the coherence time can be expressed by the spontaneous emission rate [22]

$$ \tau^{{{ - }1}} = \frac{{e^{2} \left( {E_{1} - E_{0} } \right)}}{{\varepsilon_{0} \hbar^{2} C^{3} }}\left| {\left( {\varphi_{0} ,e^{{ - i\varvec{k} \cdot \varvec{r}}} \cdot \varvec{p}\varphi_{1} } \right)} \right|^{2} . $$
(A6)

We can now expand the \( e^{{ - i\varvec{k} \cdot \varvec{r}}} \approx 1 - i\varvec{k} \cdot \varvec{r} + \ldots \) term to allow us to compute matrix element more easily. Since the \( \varvec{k} \cdot \varvec{r} \approx \frac{\alpha }{2} \) and the matrix element is squared, our expansion will be in powers of \( \alpha^{2} \) which is a small number. The dominant decays will be those form the zearth order approximation which is \( e^{{ - i\varvec{k} \cdot \varvec{r}}} \approx 1 \).

Due to the Hamiltonian and \( \varvec{r} \) in satisfying relationship of \( \left[ {H,\varvec{r}} \right] = \frac{\hbar }{i}\frac{\varvec{p}}{m} \), we can write \( \varvec{p} = \frac{im}{\hbar }\left[ {H,\varvec{r}} \right] \) in terms of the commutator.

$$ \begin{aligned} & \left( {\varphi_{0} ,e^{{ - i\varvec{k} \cdot \varvec{r}}} \cdot \varvec{p}\varphi_{1} } \right) \approx \left( {\varphi_{0} ,\varvec{p}\varphi_{1} } \right) \\ & \quad = \frac{im}{\hbar }\left( {\varphi_{0} ,\left[ {H,\varvec{r}} \right]\varphi_{1} } \right) \\ & \quad = \frac{{im\left( {E_{1} - E_{0} } \right)}}{\hbar }\left( {\varphi_{0} ,\varvec{r}\varphi_{1} } \right) \\ & \quad = \frac{{im\left( {E_{1} - E_{0} } \right)}}{\hbar }\left\langle 0 \right|\varvec{r}\left| 1 \right\rangle \\ \end{aligned} $$
(A7)

Thus, the spontaneous emission rate is expressed as

$$ \tau^{{{ - }1}} = \frac{{e^{2} \left( {E_{1} - E_{0} } \right)^{3} }}{{\varepsilon_{0} \hbar^{4} C^{3} }}\left| {\left\langle 0 \right|\varvec{r}\left| 1 \right\rangle } \right|^{2} . $$
(A8)

Here, we put the \( \left| 0 \right\rangle \) and \( \left| 1 \right\rangle \) into \( \left| {\left\langle 0 \right|\varvec{r}\left| 1 \right\rangle } \right|^{2} . \)

We first operate the

$$ \left\langle 0 \right|\varvec{r}\left| 1 \right\rangle = 4^{{\frac{{5}}{4}}} \pi^{{ - \frac{{1}}{2}}} \lambda_{0}^{{\frac{{3}}{2}}} \lambda_{0}^{{\frac{{5}}{2}}} \exp \left( { \pm i\phi } \right)\int_{0}^{\infty } {\exp \left( { - \frac{{\lambda_{0}^{2} r^{2} }}{2}} \right)\exp \left( { - \frac{{\lambda_{1}^{2} r^{2} }}{2}} \right)} r^{4} {\text{d}}r $$
(A9)
$$ \int_{0}^{\infty } {\exp \left( { - \frac{{\lambda_{0}^{2} r^{2} }}{2}} \right)\exp \left( { - \frac{{\lambda_{1}^{2} r^{2} }}{2}} \right)} r^{4} {\text{d}}r = \frac{{3}}{8}\frac{\sqrt \pi }{{\left( {\frac{{1}}{2}\left( {\lambda_{0}^{2} + \lambda_{1}^{2} } \right)} \right)^{2} \sqrt {\frac{{1}}{2}\left( {\lambda_{0}^{2} + \lambda_{1}^{2} } \right)} }} $$
(A10)

Substitute formula (A10) into formula (A9), (A9) is changed as

$$ \left\langle 0 \right|\varvec{r}\left| 1 \right\rangle = \frac{{12\lambda_{0}^{{\frac{{3}}{2}}} \lambda_{0}^{{\frac{{5}}{2}}} }}{{\left( {\frac{{1}}{2}\left( {\lambda_{0}^{2} + \lambda_{1}^{2} } \right)} \right)^{2} \sqrt {\frac{{1}}{2}\left( {\lambda_{0}^{2} + \lambda_{1}^{2} } \right)} }} $$
(A11)
$$ \left| {\left\langle 0 \right|\varvec{r}\left| 1 \right\rangle } \right|^{2} = \frac{{144\lambda_{0}^{3} \lambda_{0}^{5} }}{{\left( {\lambda_{0}^{2} + \lambda_{1}^{2} } \right)^{5} }} $$
(A12)

We put formula (A12) into formula (A9)

$$ \tau^{{{ - }1}} = \frac{{e^{2} \left( {E_{1} - E_{0} } \right)^{3} }}{{\varepsilon_{0} \hbar^{4} C^{3} }}\left| {\left\langle 0 \right|\varvec{r}\left| 1 \right\rangle } \right|^{2} = \frac{{e^{2} \left( {E_{1} - E_{0} } \right)^{3} }}{{\varepsilon_{0} \hbar^{4} C^{3} }}\frac{{144\lambda_{0}^{3} \lambda_{0}^{5} }}{{\left( {\lambda_{0}^{2} + \lambda_{1}^{2} } \right)^{5} }} $$
(A13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Xiao, JL. Qubit coherence effects in a RbCl quantum well with asymmetric Gaussian confinement potential and applied electric field. Eur. Phys. J. Plus 135, 592 (2020). https://doi.org/10.1140/epjp/s13360-020-00604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00604-4

Navigation