Skip to main content

Advertisement

Log in

Stability of a delay-distributed HIV infection model with silent infected cell-to-cell spread and CTL-mediated immunity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we formulate a mathematical model to investigate a within-host HIV dynamics under the effect of cytotoxic T lymphocytes immune response. The model incorporates two modes of transmission, virus-to-cell (VTC) and cell-to-cell (CTC). The CTC infection is due to the contact of healthy CD\(4^{+}\) T cells with (i) silent HIV-infected cells, and (ii) active HIV-infected cells. The model integrates three types of distributed time delays. We show that the model is well posed and it has three equilibria. The existence and stability of equilibria are governed by two threshold parameters. We prove the global asymptotic stability of all equilibria by utilizing Lyapunov function and LaSalle’s invariance principle. We have presented numerical simulations to illustrate the theoretical results. We have studied the effects of CTC transmission and time delays on the dynamical behavior of the system. We have shown that inclusion of time delay can significantly increase the concentration of healthy CD4\(^{+}\) T cells and reduce the concentrations of infected cells and free HIV particles. While the inclusion of CTC transmission decreases the concentration of healthy CD4\(^{+}\) T cells and increases the concentrations of infected cells and free HIV particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. H. Burger, A.L. Belman, R. Grimson, A. Kaell, K. Flaherty, J. Gulla, R.A. Gibbs, P.N. Nguyun, B. Weiser, Long HIV-1 incubation periods and dynamics of transmission within a family. The Lancet 336(8708), 134–136 (1990)

    Google Scholar 

  2. M.A. Nowak, R.M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  3. A.M. Elaiw, I.A. Hassanien, S.A. Azoz, Global stability of HIV infection models with intracellular delays. J. Korean Math. Soc. 49(4), 779–794 (2012)

    MathSciNet  MATH  Google Scholar 

  4. A.M. Elaiw, S.A. Azoz, Global properties of a class of HIV infection models with Beddington–DeAngelis functional response. Math. Methods Appl. Sci. 36, 383–394 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. A.M. Elaiw, N.A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells. Math. Methods Appl. Sci. 39(1), 4–31 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  6. M.A. Nowak, C.R.M. Bangham, Population dynamics of immune responses to persistent viruses. Science 272(5258), 74–79 (1996)

    ADS  Google Scholar 

  7. A.M. Elaiw, E.Kh. Elnahary, A.A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV. Adv. Differ. Equ. Article Number: 85 (2018)

  8. A.M. Elaiw, A.A. Raezah, S.A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment. Adv. Differ. Equ. Article Number: 414 (2018)

  9. H. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL imune responses. SIAM J. Appl. Math. 73(3), 1280–1302 (2013)

    MathSciNet  MATH  Google Scholar 

  10. X. Li, S. Fu, Global stability of a virus dynamics model with intracellular delay and CTL immune response. Math. Methods Appl. Sci. 38(3), 420–430 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  11. D. Huang, X. Zhang, Y. Guo, H. Wang, Analysis of an HIV infection model with treatments and delayed immune response. Appl. Math. Model. 40(4), 3081–3089 (2016)

    MathSciNet  MATH  Google Scholar 

  12. C. Lv, L. Huang, Z. Yuan, Global stability for an HIV-1 infection model with Beddington–DeAngelis incidence rate and CTL immune response. Commun. Nonlinear Sci. Numer. Simul. 19(1), 121–127 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  13. X. Shi, X. Zhou, X. Song, Dynamical behavior of a delay virus dynamics model with CTL immune response. Nonlinear Anal. Real World Appl. 11(3), 1795–1809 (2010)

    MathSciNet  MATH  Google Scholar 

  14. X. Tian, R. Xu, Global stability and Hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response. Appl. Math. Comput. 237, 146–154 (2014)

    MathSciNet  MATH  Google Scholar 

  15. H. Zhu, Y. Luo, M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay. Comput. Math. Appl. 62(8), 3091–3102 (2011)

    MathSciNet  MATH  Google Scholar 

  16. J. Wang, C. Qin, Y. Chen, X. Wang, Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Math. Biosci. Eng. 16(4), 2587–2612 (2019)

    MathSciNet  Google Scholar 

  17. C. Jolly, Q. Sattentau, Retroviral spread by induction of virological synapses. Traffic 5, 643–650 (2004)

    Google Scholar 

  18. H. Sato, J. Orenstein, D. Dimitrov, M. Martin, Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186(2), 712–724 (1992)

    Google Scholar 

  19. S. Iwami, J.S. Takeuchi, S. Nakaoka, F. Mammano, F. Clavel, H. Inaba, T. Kobayashi, N. Misawa, K. Aihara, Y. Koyanagi, K. Sato, Cell-to-cell infection by HIV contributes over half of virus infection. Elife 4, e08150 (2015)

    Google Scholar 

  20. N.L. Komarova, D. Wodarz, Virus dynamics in the presence of synaptic transmission. Math. Biosci. 242(2), 161–171 (2013)

    MathSciNet  MATH  Google Scholar 

  21. M. Sourisseau, N. Sol-Foulon, F. Porrot, F. Blanchet, O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81(2), 1000–1012 (2007)

    Google Scholar 

  22. A. Sigal, J.T. Kim, A.B. Balazs, E. Dekel, A. Mayo, R. Milo, D. Baltimore, Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477(7362), 95–98 (2011)

    ADS  Google Scholar 

  23. R.V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. J. Math. Biol. 46(5), 425–444 (2003)

    MathSciNet  MATH  Google Scholar 

  24. A.M. Elaiw, S.F. Alshehaiween, Global stability of delay-distributed viral infection model with two modes of viral transmission and B-cell impairment. Math. Methods Appl. Sci. 43(11), 6677–6701 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  25. X. Lai, X. Zou, Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission. SIAM J. Appl. Math. 74(3), 898–917 (2014)

    MathSciNet  MATH  Google Scholar 

  26. A.M. Elaiw, A.A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays. Math. Methods Appl. Sci. 40(16), 5863–5880 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  27. D. Adak, N. Bairagi, Analysis and computation of multi-pathways and multi-delays HIV-1 infection model. Appl. Math. Model. 54, 517–536 (2018)

    MathSciNet  MATH  Google Scholar 

  28. X. Lai, X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth. J. Math. Anal. Appl. 426(1), 563–584 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Y. Yang, L. Zou, S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Math. Biosci. 270, 183–191 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Y. Yang, T. Zhang, Y. Xu, J. Zhou, A delayed virus infection model with cell-to-cell transmission and CTL immune response. Int. J. Bifurc. Chaos 27(10), 175015011–175015015 (2017)

    MathSciNet  MATH  Google Scholar 

  31. J. Wang, M. Guo, X. Liu, Z. Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay. Appl. Math. Comput. 291, 149–161 (2016)

    MathSciNet  MATH  Google Scholar 

  32. A.G. Cervantes-Perez, E. Avila-Vales, Dynamical analysis of multipathways and multidelays of general virus dynamics model. Int. J. Bifurc. Chaos 29(3), 195003-301 (2019)

    MathSciNet  MATH  Google Scholar 

  33. T.-W. Chun, L. Stuyver, S.B. Mizell, L.A. Ehler, J.A.M. Mican, M. Baseler, A.L. Lloyd, M.A. Nowak, A.S. Fauci, Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94(24), 13193–13197 (1997)

    ADS  Google Scholar 

  34. J.K. Wong, M. Hezareh, H.F. Gunthard, D.V. Havlir, C.C. Ignacio, C.A. Spina, D.D. Richman, Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278(5341), 1291–1295 (1997)

    ADS  Google Scholar 

  35. A.M. Elaiw, N.H. AlShamrani, Stability of a general adaptive immunity virus dynamics model with multi-stages of infected cells and two routes of infection. Math. Methods Appl. Sci. 43(3), 1145–1175 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  36. A. Mojaver, H. Kheiri, Mathematical analysis of a class of HIV infection models of CD4+T-cells with combined antiretroviral therapy. Appl. Math. Computat. 259, 258–270 (2015)

    MATH  Google Scholar 

  37. A.M. Elaiw, A. Almatrafi, A.D. Hobiny, K. Hattaf, Global properties of a general latent pathogen dynamics model with delayed pathogenic and cellular infections. Discrete Dyn. Nat. Soc. 2019, Article ID 9585497 (2019)

  38. A.D. Hobiny, A.M. Elaiw, A. Almatrafi, Stability of delayed pathogen dynamics models with latency and two routes of infection. Adv. Differ. Equ. 2018(1), Article Number: 276 (2018)

  39. T. Guo, Z. Qiu, The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Math. Biosci. Eng. 16(6), 6822–6841 (2019)

    MathSciNet  Google Scholar 

  40. A.M. Elaiw, N.H. AlShamrani, Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells. Commun. Nonlinear Sci. Numer. Simul. 86, Article ID 105259 (2020)

  41. L. Agosto, M. Herring, W. Mothes, A. Henderson, HIV-1-infected CD4+ T cells facilitate latent infection of resting CD4+ T cells through cell-cell contact. Cell 24(8), 2088–2100 (2018)

    Google Scholar 

  42. J.K. Hale, S.V. Lunel, Introduction to Functional Differential Equations (Springer, New York, 1993)

    MATH  Google Scholar 

  43. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic Press, San Diego, 1993)

    MATH  Google Scholar 

  44. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  45. A. Korobeinikov, Global properties of basic virus dynamics models. Bull. Math. Biol. 66(4), 879–883 (2004)

    MathSciNet  MATH  Google Scholar 

  46. A.M. Elaiw, Global properties of a class of HIV models. Nonlinear Anal. Real World Appl. 11(4), 2253–2263 (2010)

    MathSciNet  MATH  Google Scholar 

  47. A.M. Elaiw, S.F. Alshehaiween, A.D. Hobiny, Global properties of a delay-distributed HIV dynamics model including impairment of B-cell functions. Mathematics 7(9), Article Number: 837 (2019)

  48. A.M. Elaiw, E.K. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays. Mathematics 7(2), Article Number: 157 (2019)

  49. A.M. Elaiw, N.H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal. Nonlinear Anal. Real World Appl. 26, 161–190 (2015)

    MathSciNet  MATH  Google Scholar 

  50. X. Wang, L. Rong, HIV low viral load persistence under treatment: Insights from a model of cell-to-cell viral transmission. Appl. Math. Lett. 94, 44–51 (2019)

    MathSciNet  MATH  Google Scholar 

  51. C.C. McCluskey, Delay versus age-of-infection-Global stability. Appl. Math. Comput. 217(7), 3046–3049 (2010)

    MathSciNet  MATH  Google Scholar 

  52. N. Bellomo, K.J. Painter, Y. Tao, M. Winkler, Occurrence vs absence of taxis-driven instabilities in a May-Nowak model for virus infection. SIAM J. Appl. Math. 79(5), 1990–2010 (2019)

    MathSciNet  MATH  Google Scholar 

  53. A.M. Elaiw, A.D. AlAgha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response. Nonlinear Anal. Real World Appl. 55, Article 103116 (2020)

  54. A.M. Elaiw, A.D. AlAgha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response. Appl. Math. Comput. 367, Article 124758 (2020)

  55. L. Gibelli, A. Elaiw, M.A. Alghamdi, A.M. Althiabi, Heterogeneous population dynamics of active particles: progression, mutations, and selection dynamics. Math. Models Methods Appl. Sci. 27(4), 617–640 (2017)

    MathSciNet  MATH  Google Scholar 

  56. H. Sun, J. Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay. Comput. Math. Appl. 77(1), 284–301 (2019)

    MathSciNet  MATH  Google Scholar 

  57. A.M. Elaiw, M.A. Alshaikh, Stability analysis of a general discrete-time pathogen infection model with humoral immunity. J. Differ. Equ. Appl. 25(8), 1149–1172 (2019)

    MathSciNet  MATH  Google Scholar 

  58. A.M. Elaiw, M.A. Alshaikh, Stability ofdiscrete-time HIV dynamics models with three categories of infected CD4

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-PhD-20-130-41). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlShamrani, N.H., Elaiw, A.M. & Dutta, H. Stability of a delay-distributed HIV infection model with silent infected cell-to-cell spread and CTL-mediated immunity. Eur. Phys. J. Plus 135, 593 (2020). https://doi.org/10.1140/epjp/s13360-020-00594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00594-3

Navigation