Skip to main content
Log in

Diffusion mechanism and dependence of diffusion on sodium silicate compositions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The distribution of sodium and diffusion mechanism in sodium-silicate melt with various compositions are investigated via molecular dynamics simulation. The microstructure and dynamical characteristic have been studied with the help of Voronoi polyhedron, simplex and Si-O subnet, oxygen-cluster. The simulation results reveal that Na atoms tend to be in the O polyhedrons and not in Si ones. Moreover, the Na atoms are mainly located in non-bridging oxygen (NBO) and free oxygen (FO) polyhedrons. The Voronoi volume of bridging oxygen (BO) or NBO weakly depends on the number of Na located in polyhedron which indicates the strong Si-O bond compared to Na-O bond. The structure of sodium silicate melt consists of two separate regions: the Na-poor regions of Si-BO subnets and a Na-rich region of NBO-FO cluster. The density of sodium in the NBO-FO cluster is by 3–6 times larger than the one of Si-O subnets. This largest NBO-FO cluster represents a diffusion channel for sodium in sodium-silicate. Furthermore, we find that each BO polyhedron contains 0 or 1 Na atom meanwhile each NBO polyhedron contains 1 or 2 Na atoms. Thereby, the BO and NBO polyhedron contains 1 and 2 sites, respectively. The energy for Na atom located in BO site is larger than that in NBO site. The transition energy for Na atom moving from present site to neighboring NBO site is smaller than that to neighboring BO site. So, Na atoms move frequently to neighboring polyhedrons of NBO, and rarely to the BO ones.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Molnár, P. Ganster, A. Tanguy, Phys. Rev. E 95, 043001 (2017)

    Article  ADS  Google Scholar 

  2. A.O. Davidenkoa, V.E. Sokol’skiia, A.S. Roika, I.A. Goncharovb, Inorganic Mater. 50, 1289 (2014)

    Article  Google Scholar 

  3. K. Konstantinou, D.M. Duffy, A.L. Shluger, Phys. Rev. B 94, 174202 (2016)

    Article  ADS  Google Scholar 

  4. H. Jabraoui, Y. Vaills, A. Hasnaoui, M. Badawi, S. Ouaskit, J. Phys. Chem. B 120, 51 (2016)

    Article  Google Scholar 

  5. H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, R. Ho, J. Non-Cryst. Solids 409, 139 (2015)

    Article  ADS  Google Scholar 

  6. O.N. Koroleva, V.N. Anfilogov, J. Non-Cryst. Solids 375, 62 (2013)

    Article  ADS  Google Scholar 

  7. W. Smith, G.N. Greaves, M.J. Gillan, J. Chem. Phys. 103, 8 (1995)

    Google Scholar 

  8. H. Jabraoui, E.M. Achhal, A. Hasnaoui, J.L. Garden, Y. Vaills, S. Ouaskit, J. Non-Cryst. Solids 448, 16 (2016)

    Article  ADS  Google Scholar 

  9. G. Mountjoy, B.M. Al-Hasni, C. Storey, J. Non-Cryst. Solids 357, 2522 (2011)

    Article  ADS  Google Scholar 

  10. A.C. Wright, A.G. Clare, B. Bachra, R.N. Sinclair, A.C. Hannon, B. Vessal, Trans. Am. Cryst. Assoc. 27, 239 (1991)

    Google Scholar 

  11. D.I. Grimley, A.C. Wright, R.N. Sinclair, J. Non-Cryst. Solids 119, 49 (1990)

    Article  ADS  Google Scholar 

  12. J. Neuefeind, K.D. Liss, B. Bunsenges, Phys. Chem. 100, 1341 (1996)

    Google Scholar 

  13. H.F. Poulsen, J. Neuefeind, H.-B. Neumann, J.R. Schneider, M.D. Zeidler, J. Non-Cryst. Solids 188, 63 (1995)

    Article  ADS  Google Scholar 

  14. Q. Zhao, M. Guerette, G. Scannell, L. Huang, J. Non-Cryst. Solids 358, 3418 (2012)

    Article  ADS  Google Scholar 

  15. T.K. Bechgaard et al., J. Non-Cryst. Solids 441, 49 (2016)

    Article  ADS  Google Scholar 

  16. G.N. Greaves, A. Fontaine, P. Lagrarde, D. Raoux, S.J. Gurman, Nature (London) 293, 611 (1981)

    Article  ADS  Google Scholar 

  17. G.N. Greaves et al., Philos. Mag. A 64, 1059 (1991)

    Article  ADS  Google Scholar 

  18. C. Mazzara, J. Jupille, A.-M. Flank, P. Lagarde, J. Phys. B: At. Mol. Opt. Phys. 104, 3438 (2000)

    Google Scholar 

  19. S.K. Baggain, D.B. Ghosh, B.B. Karki, Phys. Chem. Min. 42, 393 (2015)

    Article  ADS  Google Scholar 

  20. T. Voigtmann, J. Horbach, Europhys. Lett. 74, 459 (2006)

    Article  ADS  Google Scholar 

  21. A. Pedone et al., J. Phys. Chem. C 112, 11034 (2008)

    Article  Google Scholar 

  22. B. Vessal et al., Nature (London) 356, 504 (1992)

    Article  ADS  Google Scholar 

  23. E. Sunyer, P. Jund, R. Jullien, J. Phys.: Condens. Matter 15, S1659 (2003)

    ADS  Google Scholar 

  24. J. Habasaki, K.L. Ngai, Y. Hiwatari, J. Chem. Phys. 121, 925 (2004)

    Article  ADS  Google Scholar 

  25. S.I. Sviridov, Glass Phys. Chem. 39, 130 (2013)

    Article  Google Scholar 

  26. A. Meyer, F. Kargk, J. Horbach, Neutron News 23, 35 (2012)

    Article  Google Scholar 

  27. A. Meyer, J. Horbach, W. Kob, F. Kargl, H. Schober, Phys. Rev. Lett. 9, 027801 (2004)

    Article  ADS  Google Scholar 

  28. E. Sunyer, P. Jund, R. Jullien, Phys. Rev. B 65, 214203 (2002)

    Article  ADS  Google Scholar 

  29. P. Jund, W. Kob, R. Jullien, Phys. Rev. B 64, 134303 (2001)

    Article  ADS  Google Scholar 

  30. N.T.T. Ha, N.V. Hong, P.K. Hung, Int. J. Mod. Phys. B 33, 950013 (2019)

    Article  Google Scholar 

  31. T.B. Van, P.K. Hung, L.T. Vinh, N.T.T. Ha, L.T. San, F. Noritake, J. Mater. Sci. 55, 2870 (2020)

    Article  ADS  Google Scholar 

  32. A. Takada, J. Non-Cryst. Solids 499, 309 (2018)

    Article  ADS  Google Scholar 

  33. J.R. Rustad, D.A. Yuen, F.J. Spera, Phys. Rev. B 44, 2108 (1991)

    Article  ADS  Google Scholar 

  34. H. Sakuma, K. Kawamura, Geochim. Cosmochim. Acta 73, 4100 (2009)

    Article  ADS  Google Scholar 

  35. F. Noritake, K. Kawamura, T. Yoshino, E. Takahashi, J. Non-Cryst. Solids 358, 3109 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Thanh Ha.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, N.T.T., Trang, N.T., Hung, H.V. et al. Diffusion mechanism and dependence of diffusion on sodium silicate compositions. Eur. Phys. J. B 93, 141 (2020). https://doi.org/10.1140/epjb/e2020-10116-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10116-4

Keywords

Navigation