Skip to main content

Advertisement

Log in

\(\beta \)-Decay endpoint energy measurement in \(^{150}\)Pm\(\rightarrow ^{150}\)Sm using \(\beta - \gamma \) coincidence

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(\beta \) decay endpoint energies corresponding to the decay from \(^{150}\)Pm to levels in \(^{150}\)Sm have been measured for the first time. The measurement has been made with a \(\beta -\gamma \) coincidence setup of two thin window Planar HPGe detectors and four Clover HPGe detectors. This measurement is a part of the program, taken up at VECC, on \(\beta -\gamma \) spectroscopy that would be utilized to characterise long lived \(\beta \) decaying isomers in nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. J.S.E. Wieslander et al., Phys. Rev. Lett. 103, 122501 (2009)

    Article  ADS  Google Scholar 

  2. I. Dillmann et al., Phys. Rev. Lett. 91, 162503 (2003)

    Article  ADS  Google Scholar 

  3. D. Bazin et al., Phys. Rev. Lett. 101, 252501 (2008)

    Article  ADS  Google Scholar 

  4. K. Miernik et al., Phys. Rev. C 88, 014309 (2013)

    Article  ADS  Google Scholar 

  5. D.S. Brenner et al., Phys. Rev. C 26, 2166 (1982)

    Article  ADS  Google Scholar 

  6. G.G. Kennedy, S.C. Gujrathi, S.K. Mark, Z. Phys. A 274, 233 (1975)

    Article  ADS  Google Scholar 

  7. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  8. M. Block, C. Bachelet, G. Bollen, M. Facina, C.M. Folden, C. Guenaut, A.A. Kwiatkowski, D.J. Morrissey, G.K. Pang, A. Prinkle, R. Ringle, J. Savory, P. Schury, S. Schwarz, Phys. Rev. Lett. 100, 132501 (2008)

    Article  ADS  Google Scholar 

  9. A. Jokinen, T. Eronen, U. Hager, J. Hakala, V. Kolhinen, S. Kopecky, S. Rinta-Antila, J. Szerypo, J. Aysto, Nucl. Phys. A 746, 277c (2004)

    Article  ADS  Google Scholar 

  10. P.E. Haustein, ed., At. Data and Nucl. Data Tables 39, 185 (1988)

  11. R.C. Greenwood, M.H. Putnam, Nucl. Inst. Meth. A 337, 106 (1993)

    Article  ADS  Google Scholar 

  12. J. Dilling, K. Blaum, M. Brodeur, S. Eliseev, Annu. Rev. Nucl. Part. Sci. 68, 45 (2018)

    Article  ADS  Google Scholar 

  13. P.C. Sood, R.W. Hoff, R.K. Sheline, Phys. Rev. C 33, 2163 (1986)

    Article  ADS  Google Scholar 

  14. P.C. Sood, M. Sainath, R. Gowrishankar, K. Vijay Sai, Phys. Rev. C 83, 027303 (2011)

    Article  ADS  Google Scholar 

  15. A.K. Jain et al., Rev. Mod. Phys. 70, 843 (1998)

    Article  ADS  Google Scholar 

  16. K.T. Lesko et al., Phys. Rev. C 39, 619 (1989)

    Article  ADS  Google Scholar 

  17. Luca Marmugi, Philip M. Walker, Ferruccio Renzonia, Phys. Lett. B 777, 281 (2018)

    Article  ADS  Google Scholar 

  18. http://www.nndc.bnl.gov/ensdf. Accessed 5 Nov 2019

  19. http://www.nndc.bnl.gov/xundl. Accessed 5 Nov 2019

  20. L. Funke, W.D. Fromm, H.J. Keller, R. Arlt, P.M. Gopytsch, Nucl. Phys. A 274, 61 (1976)

    Article  ADS  Google Scholar 

  21. Yu. Khazov, A. Rodionov, G. Shulyak, Nucl. Data Sheets 136, 163 (2016)

    Article  ADS  Google Scholar 

  22. J. Inorg. Nucl. Chem., 33, 1208 (1971)

  23. C.F. Schwerdtfeger et al., Phys. Rev. 125, 1641 (1962)

    Article  ADS  Google Scholar 

  24. W.B. Walters, N.K. Aras, C.A. Stone, C. Chung, R.L. Gill, M. Shmid, E.A. Henry, R.A. Meyer, Phys. Rev. C 33, 1036 (1986)

    Article  ADS  Google Scholar 

  25. Hiroshi Yamamoto, Kiyoshi Kawade, Yujiro Ikeda, Toshio Katoh, J. Phys. Soc. Jpn. 43, 8 (1977)

    Article  ADS  Google Scholar 

  26. M.J. Martin, Nucl. Data Sheets 114, 1497 (2013)

    Article  ADS  Google Scholar 

  27. Hiroshi Yamamoto, Kiyoshi Kawade, Hiroyasu Fukaya, Toshio Katoh, J. Phys. Soc. Jpn. 37, 10 (1974)

    Article  ADS  Google Scholar 

  28. M. Shibata, O. Suematsu, Y. Kojima, K. Kawade, A. Taniguchi, Y. Kawase, Eur. Phys. J. A 31, 171 (2007)

    Article  ADS  Google Scholar 

  29. H.S. Pruys, E.A. Hermes, H.R. Von Gunten, J. Inorg. Nucl. Chem. 37, 1587 (1975)

    Article  Google Scholar 

  30. D.C. Sousa, L.L. Riedinger, E.G. Funk, J.W. Mihelich, Nucl. Phys. A 238, 365 (1975)

    Article  ADS  Google Scholar 

  31. C.W. Reich, Nucl. Data Sheets 113, 2537 (2012)

    Article  ADS  Google Scholar 

  32. S. Drissi et al., Z. Phys. A 302, 361 (1981)

    Article  ADS  Google Scholar 

  33. C.J. Gallagher, S.A. Moszkowski, Phys. Rev. C 111, 1282 (1958)

    Article  ADS  Google Scholar 

  34. T. Bhattacherjee et al., Nucl. Instr. Meth. A 767, 19 (2014)

    Article  ADS  Google Scholar 

  35. D. Banerjee et al., Phys. Rev. C 91, 024617 (2015)

    Article  ADS  Google Scholar 

  36. O.B. Tarasov, D. Bazin, Nucl. Instr. Meth. Phys. Res. B 204, 174 (2003)

    Article  ADS  Google Scholar 

  37. Juhani Kantele, Handbook of Nuclear Spcetrometry (Academic Press, London, 1995)

    Google Scholar 

  38. http://www.tifr.res.in/~pell. Accessed 5 Nov 2019

  39. D.C. Radford, Nucl. Instr. Meth. A 361, 297 (1995)

    Article  ADS  Google Scholar 

  40. G. Soti et al., Nucl. Instr. Meth. A 728, 11 (2013)

    Article  ADS  Google Scholar 

  41. A. Saha et al., Nucl. Phys. A 976, 1 (2018). (and reference therein)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the K-130 cyclotron staffs for providing stable good-quality beam. We want to thank Mr. R. K. Chatterjee for preparing the good quality electro-deposited targets. The efforts of physics lab members for maintaining the detectors throughout the year are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saha.

Additional information

Communicated by Calin Alexandru Ur.

R. Guin: Retired

S. K. Das: Retired

S. R. Banerjee: Retired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Bhattacharjee, T., Banerjee, D. et al. \(\beta \)-Decay endpoint energy measurement in \(^{150}\)Pm\(\rightarrow ^{150}\)Sm using \(\beta - \gamma \) coincidence. Eur. Phys. J. A 56, 189 (2020). https://doi.org/10.1140/epja/s10050-020-00194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00194-w

Navigation