Skip to main content
Log in

Sum rule of quantum uncertainties: coupled harmonic oscillator system with time-dependent parameters

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Uncertainties \((\Delta x)^2\) and \((\Delta p)^2\) are analytically derived in an N-coupled harmonic oscillator system when spring and coupling constants are arbitrarily time-dependent and each oscillator is in an arbitrary excited state. When \(N = 2\), those uncertainties are shown as just arithmetic average of uncertainties of two single harmonic oscillators. We call this property as “sum rule of quantum uncertainty”. However, this arithmetic average property is not generally maintained when \(N \ge 3\), but it is recovered in N-coupled oscillator systems if and only if \((N-1)\) quantum numbers are equal. The generalization of our results to a more general quantum system is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The Rényi-\(\alpha \) entropies of few non-Gaussian states have been derived in [29].

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)

    ADS  MATH  Google Scholar 

  2. Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)

    ADS  MATH  Google Scholar 

  3. Robertson, H.P.: The Uncertainty Principle. Phys. Rev. 34, 163 (1929)

    ADS  Google Scholar 

  4. Busch, P., Heinonen, T., Lahti, P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155 (2007)

    ADS  Google Scholar 

  5. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    ADS  MATH  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum Entanglement. Rev. Mod. Phys. 81, 865 (2009). [arXiv:quant-ph/0702225] and references therein

    ADS  MathSciNet  MATH  Google Scholar 

  8. Wehner, S., Winter, A.: Entropic uncertainty relations-a survey. New J. Phys. 12, 025009 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)

    ADS  MathSciNet  Google Scholar 

  10. Tawfik, A.N., Diab, A.M.: Review on Generalized Uncertainty Principle. Rept. Prog. Phys. 78, 126001 (2015). [arXiv:1509.02436 (physics.gen-ph)] and references therein

    ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen Channles. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Luo, Y.H., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019). [arXiv:1906.09697 (quant-ph)]

    ADS  Google Scholar 

  13. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Scarani, V., Lblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005). [arXiv:quant-ph/0511088] and references therein

    ADS  MathSciNet  MATH  Google Scholar 

  15. Ekert, A.K.: Quantum cryptography based on Bell’s Theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  17. Wang, K., Wang, X., Zhan, X., Bian, Z., Li, J., Sanders, B.C., Xue, P.: Entanglement-enhanced quantum metrology in a noisy environment. Phys. Rev. A 97, 042112 (2018). [arXiv:1707.08790 (quant-ph)]

    ADS  Google Scholar 

  18. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010). [arXiv:1009.2267 (quant-ph)]

    ADS  Google Scholar 

  19. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003). [arXiv:quant-ph/0301063]

    ADS  Google Scholar 

  20. Ghernaouti-Helie, S., Tashi, I., Laenger, T., Monyk, C.: SECOQC Business White Paper arXiv:0904.4073 (quant-ph)

  21. see https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/

  22. Han, D., Kim, Y.S., Noz, M.E.: Coupled Harmonic Oscillators and Feynman’s Rest of the Universe arXiv:cond-mat/9705029

  23. Han, D., Kim, Y.S., Noz, M.E.: Illustrative example of Feynman’s rest of the universe. Am. J. Phys. 67, 61 (1999)

    ADS  Google Scholar 

  24. Feymann, R.P.: Statistical Mechanics. Benjamin/Cummings, Reading (1972)

    Google Scholar 

  25. Bennett, C.H., DiVincenzo, D.P., Smokin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996). [arXiv:quant-ph/9604024]

    ADS  MathSciNet  MATH  Google Scholar 

  26. Park, D.K.: Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results. Quant. Inf. Proc. 17, 147 (2018). [arXiv:1801.07070 (quant-ph)]

    MathSciNet  MATH  Google Scholar 

  27. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000). [arXiv:quant-ph/9908056]

    ADS  Google Scholar 

  28. Mandilara, A., Cerf, N.J.: Quantum uncertainty relation saturated by the eigenstates of the harmonic oscillator. Phys. Rev. A 86, 030102(R) (2012). [arXiv:1201.0453 (quant-ph)]

    ADS  Google Scholar 

  29. Kim, I.: Rényi-\(\alpha \) entropies of quantum states in closed form: gaussian states and a class of non-Gaussian states. Phys. Rev. E 97, 062141 (2018). [arXiv:1804.05980 (cond-mat)]

    ADS  Google Scholar 

  30. Krueger, O., Werner, R.F.: Some Open Problems in Quantum Information Theory arXiv:quant-ph/0504166

  31. Uhlmann, A.: Fidelity and concurrence of conjugate states. Phys. Rev. A 62, 032307 (2000). [arXiv:quant-ph/9909060]

    ADS  MathSciNet  Google Scholar 

  32. Vidal, G., Dür, W., Cirac, J.I.: Entanglement cost of mixed states. Phys. Rev. Lett. 89, 027091 (2002). [arXiv:quant-ph/0112131]

    Google Scholar 

  33. Walls, D.F.: Squeezed states of light. Nature 306(5939), 141 (1983)

    ADS  Google Scholar 

  34. Loudon, R., Knigh, P.L.: Squeezed light. J. Mod. Opt. 34, 709 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Wu, L.A., Xiao, M., Kimble, H.J.: Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B 4, 1465 (1987)

    ADS  Google Scholar 

  36. Schnabel, R: Squeezed states of light and their applications in laser interferometers, Phys. Rep. 684 (2017) 1 [arXiv:1611.03986 (quant-ph)]

  37. Grishchuk, L.P., Sidorov, Y.V.: Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev. D 42, 3413 (1990)

    ADS  MathSciNet  Google Scholar 

  38. Grishchuk, L.P.: Quantum effects in cosmology. Classical Quant Gravity 10, 2449 (1993). (arXiv:gr-qc/9302036)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Einhorn, M.B., Larsen, F.: Squeezed states in the de Sitter vacuum. Phys. Rev. D 68, 064002 (2003). (arXiv:hep-th/0305056)

    ADS  MathSciNet  Google Scholar 

  40. Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Pointer states for primordial fluctuations in inflationary cosmology. Classical Quant. Gravity 24, 1699 (2007). (arXiv:astro-ph/0610700)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Ma, X., Rhodes, W.: Squeezing in harmonic oscillators with time-dependent frequencies. Phys. Rev. A 39, 1941 (1989)

    ADS  MathSciNet  Google Scholar 

  43. Lohe, M.A.: Exact time dependence of solutions to the time-dependent Schrödinger equation. J. Phys. Math. Theor. 42, 035307 (2009)

    ADS  MATH  Google Scholar 

  44. Tibaduiza, D.M., Pires, L.B., Szilard, D., Rego, A.L.C., Zarro, C.A.D., Farina, C.: Exact algebraic solution for a quantum harmonic oscillator with time-dependent frequency, arXiv:1908.11006 [quant-ph]

  45. Pinney, E.: The nonlinear differential equation. Proc. Am. Math. Soc. 1, 681 (1950)

    MATH  Google Scholar 

  46. Gritsev, V., Barmettler, P., Demler, E.: Scaling approach to quantum non-equilibrium dynamics of many-body systems. New J. Phys. 12 (2010) 113005 [arXiv:0912.2744 (cond-mat)]

  47. del Campo, A.: Exact quantum decay of an interacting many-particle system: the Calogero–Sutherland model. New J. Phys. 18, 015014 (2016). [arXiv:1504.01620 (quant-ph)]

    MATH  Google Scholar 

  48. Kim, Y.S., Noz, M.E.: Phase Space Picture of Quantum Mechanics. World Scientific, Singapore (1991)

    Google Scholar 

  49. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series vol. 2, Gordon and Breach Science Publishers, New York (1983)

  50. Braunstein, S.L., van Loock, P.: Quantum Information with continuous variables, Rev. Mod. Phys. 77 (2005) 513 quant-ph/0410100) and references therein

  51. Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: gaussian states and beyond. Open. Syst. Inf. Dyn. 21, 1440001 (2014). [arXiv:1401.4679 (quant-ph)]

    MathSciNet  MATH  Google Scholar 

  52. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000). (arXiv:quant-ph/9909044)

    ADS  Google Scholar 

  53. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Entanglement purification of Gaussian variable quantum states. Phys. Rev. Lett. 84, 4002 (2000). (arXiv:quant-ph/9912017)

    ADS  MATH  Google Scholar 

  54. Giedke, G., Duan, L.M., Cirac, J.I., Zoller, P.: All inseparable two-mode Gaussian continuous variable states are distillable arXiv:quant-ph/0007061

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaeKil Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D., Jung, E. Sum rule of quantum uncertainties: coupled harmonic oscillator system with time-dependent parameters. Quantum Inf Process 19, 259 (2020). https://doi.org/10.1007/s11128-020-02757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02757-8

Keywords

Navigation