Skip to main content

Advertisement

Log in

Local and Geographic Factors Shape the Occupancy-Frequency Distribution of Freshwater Bacteria

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Species prevalence across the landscape is related to their local abundance, which is a result of deterministic and stochastic processes that select organisms capable of recolonizing sites where they were once extinct, a process known as the rescue effect. The occupancy-frequency distribution (OFD) describes these patterns and has been extensively used to understand organism’s distribution but has been poorly tested on microorganisms. In order to test OFD on freshwater bacteria, we collected data from 60 shallow lakes distributed across a wide area in southeastern Brazil, to determine the bacterial operational taxonomic units (OTUs) that were present in all sites (core) and at only one site (satellite). Then, we analyzed the spatial abundance distributions of individual OTUs to understand the influence of local abundances on regional occupancy patterns. Finally, we tested the environmental factors that influenced occupancy and abundance. We found a significant bimodal OFD for freshwater bacteria using both OTUs (97% clustering) and amplicon sequence variants (ASVs, unique sequences), with 13 core OTUs and 1169 satellite OTUs, but only three core ASVs. Core organisms had a bimodal or gamma abundance distribution. The main driver of the core community was pH, while nutrients were key when the core community was excluded and the rest of the community (mild and satellite taxa) was considered. This study demonstrates the close relationship between local environmental conditions and the abundance and dispersion of microorganisms, which shapes their distribution across the landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The 16S rRNA amplicon results have been deposited in the NCBI repository under accession number PRJNA411849.

References

  1. Gleason H (1929) The significance of Raunkiaer’s law of frequency. Ecology 10:406–408

    Article  Google Scholar 

  2. Papp L, Izsák J (1997) Bimodality in occurrence classes: a direct consequence of lognormal or logarithmic series distribution of abundances: a numerical experimentation. Oikos 79:191–194

    Article  Google Scholar 

  3. Soininen J, Heino J (2005) Relationships between local population persistence, local abundance and regional occupancy of species: distribution patterns of diatoms in boreal streams. J Biogeogr 32:1971–1978

    Article  Google Scholar 

  4. Tonkin JD, Arimoro FO, Haase P (2016) Exploring stream communities in a tropical biodiversity hotspot: biodiversity, regional occupancy, niche characteristics and environmental correlates. Biodivers Conserv 25:975–993

    Article  Google Scholar 

  5. Lindh MV, Sjostedt J, Ekstam B, Casini M, Lundin D, Hugerth LW, Hu YO, Andersson AF, Andersson A, Legrand C, Pinhassi J (2017) Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers. Environ Microbiol 19:1222–1236

    Article  CAS  PubMed  Google Scholar 

  6. Jeong SY, Choi JY, Kim TG (2020) Coordinated metacommunity assembly and spatial distribution of multiple microbial kingdoms within a lake. Microb Ecol 79:801–814

  7. Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221

    Article  Google Scholar 

  8. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  9. Gotelli NJ (1991) Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. Am Nat 138:768–776

    Article  Google Scholar 

  10. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  11. Gaston KJ, Blackburn TM, Greenwood JJ, Gregory RD, Quinn RM, Lawton JH (2000) Abundance–occupancy relationships. J Appl Ecol 37:39–59

    Article  Google Scholar 

  12. Niño-García JP, Ruiz-González C, del Giorgio PA (2016) Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J 10:1755–1766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Niño-García JP, Ruiz-González C, Del Giorgio PA (2016) Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton. Ecol Lett 19:1506–1515

    Article  PubMed  Google Scholar 

  14. Niño-García JP, Ruiz-González C, Del Giorgio PA (2017) Exploring the ecological coherence between the spatial and temporal patterns of bacterioplankton in boreal lakes. Front Microbiol 8:636

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockum, Den Haag

    Google Scholar 

  16. Barberán A, Casamayor EO, Fierer N (2014) The microbial contribution to macroecology. Front Microbiol 5:203

    Article  PubMed  PubMed Central  Google Scholar 

  17. Green JL, Bohannan BJ, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043

    Article  CAS  PubMed  Google Scholar 

  18. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    Article  CAS  PubMed  Google Scholar 

  19. Horner-Devine MC, Bohannan BJ (2006) Unifying ecology to include all creatures great and small. Trends Ecol Evol 21:473

    Article  PubMed  Google Scholar 

  20. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  CAS  PubMed  Google Scholar 

  21. Heino J (2015) Deconstructing occupancy frequency distributions in stream insects: effects of body size and niche characteristics in different geographical regions. Ecol Entomol 40:491–499

    Article  Google Scholar 

  22. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  23. Cammack WKL, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045

    Article  Google Scholar 

  24. Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43:885–895

    Article  CAS  Google Scholar 

  25. Cunha DGF, Calijuri MC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134

    Article  Google Scholar 

  26. Marker A (1980) The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch Hydrobiol Ergebn Limnol 14:91–106

    CAS  Google Scholar 

  27. Mush E (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Beih 14:14–36

    Google Scholar 

  28. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  29. Mateus-Barros E, Meneghine AK, Bagatini IL, Fernandes CC, Kishi LT, Vieira AAH, Sarmento H (2019) Comparison of two DNA extraction methods widely used in aquatic microbial ecology. J Microbiol Methods 159:12–17

    Article  CAS  PubMed  Google Scholar 

  30. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Logares R (2017) Ramalok/amplicon_processing: workflow for analysing MiSeq amplicons based on Uparse

  32. Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, Hingamp P, Ogata H, de Vargas C, Lima-Mendez G, Raes J, Poulain J, Jaillon O, Wincker P, Kandels-Lewis S, Karsenti E, Bork P, Acinas SG (2014) Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16:2659–2671

    Article  CAS  PubMed  Google Scholar 

  33. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner F (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  35. Yilmaz P, Parfrey L, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glockner F (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648

    Article  CAS  PubMed  Google Scholar 

  36. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Core Team (2016) R: A Language and Environment for Statistical Computing. In: Editor (ed.)^(eds.) Book R: A Language and Environment for Statistical Computing, vol. R Foundation for Statistical Computing, City

  38. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package

  39. Mitchell-Olds T, Shaw RG (1987) Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41:1149–1161

    Article  PubMed  Google Scholar 

  40. Ter Braak CJ, Looman CW (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:3–11

    Article  Google Scholar 

  41. Maechler M (2016) Diptest: Hartiganś Dip Test Statistic for Unimodality - corrected. In: editor (ed.)^(eds.) Book diptest: Hartiganś dip test statistic for unimodality - corrected, vol., City

  42. Delignette-Muller ML, Dutang C (2015) fitdistrplus: an R package for fitting distributions. J Stat Softw 64:1–34

    Article  Google Scholar 

  43. Nychka D, Furrer R, Paige J, Sain S (2017) Fields: tools for spatial data (R package), version 8.3-6. In: editor (ed.)^(eds.) Book fields: tools for spatial data (R package), version 8.3-6, vol., City

  44. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  45. Mehranvar L, Jackson DA (2001) History and taxonomy: their roles in the core-satellite hypothesis. Oecologia 127:131–142

    Article  PubMed  Google Scholar 

  46. Ruiz-González C, Niño-García JP, del Giorgio PA (2015) Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett 18:1198–1206

    Article  PubMed  Google Scholar 

  47. Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554

    Article  CAS  PubMed  Google Scholar 

  48. Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT, Quince C (2015) Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 43:e37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hosen JD, Febria CM, Crump BC, Palmer MA (2017) Watershed urbanization linked to differences in stream bacterial community composition. Front Microbiol 8:1452

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mentes A, Szabo A, Somogyi B, Vajna B, Tugyi N, Csitari B, Voros L, Felfoldi T (2017) Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 94:fix164

  51. de Melo ML, Bertilsson S, Amaral JHF, Barbosa PM, Forsberg BR, Sarmento H (2019) Flood pulse regulation of bacterioplankton community composition in an Amazonian floodplain lake. Freshw Biol 64:108–120

    Article  Google Scholar 

  52. Camara Dos Reis M, Lacativa Bagatini I, de Oliveira VL, Bonnet MP, da Motta MD, Sarmento H (2019) Spatial heterogeneity and hydrological fluctuations drive bacterioplankton community composition in an Amazon floodplain system. PLoS One 14:e0220695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Golebiewski M, Calkiewicz J, Creer S, Piwosz K (2017) Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: the case study of the Vistula river estuary. Environ Microbiol Rep 9:129–143

    Article  CAS  PubMed  Google Scholar 

  54. Newton RJ, Jones SE, Helmus MR, McMahon KD (2007) Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 73:7169–7176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim S, Kang I, Seo J-H, Cho J-C (2019) Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J 13:2252–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, Mutschler J, Dwulit-Smith J, Chan L-K, Martinez-Garcia M (2014) Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J 8:2503–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev : MMBR 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J (2016) Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J 10:1642–1655

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jezbera J, Jezberová J, Brandt U, Hahn MW (2011) Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salcher MM (2014) Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol 73:74–87

    Google Scholar 

  61. Buck U, Grossart HP, Amann R, Pernthaler J (2009) Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol 11:1854–1865

    Article  CAS  PubMed  Google Scholar 

  62. Kasalický V, Jezbera J, Hahn MW, Šimek K (2013) The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nelson WC, Stegen JC (2015) The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front Microbiol 6:713

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lindström ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Melo ML, Kothawala DN, Bertilsson S, Amaral JH, Forsberg B, Sarmento H (2020) Linking dissolved organic matter composition and bacterioplankton communities in an Amazon floodplain system. Limnol Oceanogr 65:63–76

  68. Morana C, Sarmento H, Descy J-P, Gasol JM, Borges AV, Bouillon S, Darchambeau F (2014) Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes. Limnol Oceanogr 59:1364–1375

    Article  CAS  Google Scholar 

  69. Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  PubMed  Google Scholar 

  70. Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Armando Vieira for providing the samples from the Biota-FAPESP project and to his lab team Cilene C. Mori, Fabrício S. Maeccheri, Guilherme P. de Moraes, Helena H. Vieira, Ingritt C. Moreira, Letícia P. Tessarolli, Lucas S. Tiberti, Luiz A. Joaquim, Naiara C. P. Archanjo, Rodrigo V. de Mello, and Thaís G. da Silva, who participated in the field sampling and performed physio-chemical analyses. We also thank the LMSeq Laboratory of UNESP for DNA sequencing. Adriano Caliman gratefully acknowledges continuous funding through Research Productivity Grants provided by CNPq.

Funding

This research was funded by the São Paulo Research Foundation - FAPESP (projects 2014/14139-3 and 2011/50054-4). EMB was funded by a CAPES scholarship (grant 001); HS was supported by CNPq (grant 309514/2017-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Mateus-Barros.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

The R scripts used in these analyses can be found at: https://github.com/LMPB/Occupancy-Frequency-Distribution

Electronic Supplementary Material

ESM 1

(DOCX 542 kb)

ESM 2

(XLSX 28 kb)

ESM 3

(XLSX 207 kb)

ESM 4

(XLSX 10 kb)

ESM 5

(XLSX 337 kb)

ESM 6

(XLSX 11 kb)

ESM 7

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateus-Barros, E., de Melo, M.L., Bagatini, I.L. et al. Local and Geographic Factors Shape the Occupancy-Frequency Distribution of Freshwater Bacteria. Microb Ecol 81, 26–35 (2021). https://doi.org/10.1007/s00248-020-01560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01560-3

Keywords

Navigation