Skip to main content
Log in

Investigation of spectroscopic properties and molecular dynamics simulations of the interaction of mebendazole with β-cyclodextrin

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The effect of β-cyclodextrin (β-CD) on the spectroscopic properties of mebendazole, MBZ, in aqueous solution was investigated at pH values of 2.0, 4.0, 6.0, 8.0, 10.0, and 12.0, where mebendazole exists as protonated (HMBZ+), neutral (MBZ), or deprotonated (MBZ) forms. Mebendazole shows two absorption bands at 236 nm and 288 nm at pH 2.0, which are shifted gradually as pH increases to 265 nm and 350 nm at pH 12.0, and one fluorescence emission band at 463 nm at all pH values. In the presence of β-CD, the emission band at 463 nm was enhanced and new emission bands in the range 300–350 nm were observed at pH 2.0–6.0. In addition, pKa1 of MBZ increased and pKa2 decreased, indicating that both benzimidazole and carbamate moieties are involved in complex formation, which is confirmed by the results of molecular dynamics (MD) simulations. Benesi–Hildebrand analysis and MD simulations show that binding stoichiometry of neutral MBZ/β-CD complex is 1:2, where the wide rims of both CD macrocycles face each other, while a stoichiometry of 1:1 was observed for the protonated HMBZ+/β-CD complex. Experimentally obtained thermodynamic parameters show that complexation of MBZ with β-CD is a spontaneous enthalpy driven process (ΔG° = −36.3 kJ mol−1 for MBZ/β-CD and ΔG° = −25.9 kJ mol−1 for HMBZ+/β-CD), while binding free energy computed through MM-PBSA computational method shows that driving forces for complex formation is van der Waals interactions and H-bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.K.K. Seah, Can. Med. Assoc. J. 116, 777 (1975)

    Google Scholar 

  2. P. Kern, Langenbecks Arch. Surg. 388, 413 (2003)

    PubMed  Google Scholar 

  3. R.S. Keri, A. Hiremathad, S. Budagumpi, B.M. Nagaraja, Chem. Biol. Drug Des. 86, 19 (2015)

    PubMed  Google Scholar 

  4. P. Nygren, M. Fryknäs, B. Ågerup, R. Larsson, J. Cancer Res. Clin. Oncol. 139, 2133 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Martarelli, P. Pompei, C. Baldi, G. Mazzoni, Cancer Chemother. Pharmacol. 61, 809 (2008)

    CAS  PubMed  Google Scholar 

  6. L.T. Lam, H. Zhang, J. Xue, J.D. Leverson, A. Bhathena, Cancer Cell Int. 15, 5 (2015). https://doi.org/10.1186/s12935-014-0151-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Lahiani-Skiba, A. Coquard, F. Bounoure, P. Vérité, P. Arnaud, M. Skiba, J. Incl. Phenom. Macrocycl. Chem. 57, 197 (2007)

    CAS  Google Scholar 

  8. I. Shehatta, Monatsh. Chem. 133, 1239 (2002)

    CAS  Google Scholar 

  9. D. Diaz, M.J.B. Bernad, J.G. Mora, C.M.E. Llanos, Drug Dev. Ind. Pharm. 25, 111 (1999)

    CAS  PubMed  Google Scholar 

  10. O.M. Ba, M. Lahiani-Skiba, S. Joudieh, F. Bounoure, M. Skiba, NSTI-Nanotech. 2, 386 (2008)

    CAS  Google Scholar 

  11. E.I.A. Karim, M.H. Ahmed, R.B. Salama, Int. J. Pharm. 142, 251 (1996)

    Google Scholar 

  12. G. Ragno, A. Risoli, G. Ioele, M. De Luca, Chem. Pharm. Bull. 54, 802 (2006)

    CAS  Google Scholar 

  13. M.E. Brewster, T. Loftsson, Adv. Drug Deliv. Rev. 59, 645 (2007)

    CAS  PubMed  Google Scholar 

  14. Y.H. Kim, D.W. Cho, N.W. Song, D. Kim, M. Yoon, J. Photochem. Photobiol. A Chem. 106, 161 (1997)

    CAS  Google Scholar 

  15. I.V.M.V. Enoch, M. Swaminathan, J. Fluoresc. 14, 751 (2004)

    PubMed  Google Scholar 

  16. T. Stalin, N. Rajendiran, Spectrochim. Acta A 61, 3087 (2005)

    CAS  Google Scholar 

  17. G.S. Cox, N.J. Turro, J. Am. Chem. Soc. 106, 422 (1984)

    CAS  Google Scholar 

  18. J. Velasco, C. Carmona, M.A. Munoz, P. Guardado, M. Balon, J. Incl. Phenom. Macrocycl. Chem. 35, 637 (1999)

    CAS  Google Scholar 

  19. F.O. Yousef, R. Ghanem, N.H. Alshraa, N.M. Al Omari, K. Bodoor, M.I. El-Barghouthi, J. Incl. Phenom. Macrocycl. Chem. 88, 171 (2017)

    CAS  Google Scholar 

  20. A.M. Rawashdeh, M.I. El-Barghouthi, K.I. Assaf, S.I. AlGharabli, J. Incl. Phenom. Macrocycl. Chem. 64, 357 (2009)

    CAS  Google Scholar 

  21. M.I. El-Barghouthi, C. Jaime, R.E. Akielah, N.A. Al-Sakhen, N. Masoud, A.A. Issa, A.A. Badwan, M.B. Zughul, Supramol. Chem. 21, 603 (2009)

    CAS  Google Scholar 

  22. L.D. Malhis, K. Bodoor, K.I. Assaf, N.A. Al-Sakhen, M.I. El-Barghouthi, Comp. Theor. Chem. 1066, 104 (2015)

    CAS  Google Scholar 

  23. Y. Santaladchaiyakit, S. Srijaranai, Anal. Methods 4, 3864 (2012)

    CAS  Google Scholar 

  24. R. Ghanem, F. Yousef, O. Abu Awwad, Turk. J. Chem. 42, 247 (2018)

    CAS  Google Scholar 

  25. R. Puliti, C.A. Mattia, L. Paduano, Carbohydr. Res. 310, 1 (1998)

    CAS  PubMed  Google Scholar 

  26. K. Linder, W. Saenger, Carbohydr. Res. 99, 103 (1982)

    Google Scholar 

  27. K. Harata, Bull. Chem. Soc. Jpn. 60, 2763 (1987)

    CAS  Google Scholar 

  28. O. Trott, A.J. Olson, J. Comput. Chem. 31, 455 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. D.A. Case, T.A. Darden, T.E. III. Cheatham, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, R.C. Walker, W. Zhang, K.M. Merz, B. Roberts, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K.F. Wong, F. Paesani, J. Vanicek, J. Liu, X. Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.J. Hsieh, G. Cui, D.R. Roe, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, P.A. Kollman, Amber 11 (University of California, San Francisco, 2010)

  30. K.N. Kirschner, A.B. Yongye, S.M. Tschampel, J. González-Outeiriño, C.R. Daniels, B.L. Foley, R.J. Woods, J. Comput. Chem. 29, 622 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. J.M. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25, 1157 (2004)

    CAS  PubMed  Google Scholar 

  32. J.M. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 26, 114 (2005)

    CAS  Google Scholar 

  33. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montagomery, J.R. Verven, K. Kudin, J. Burant, J.M. Millam, S. Iyenger, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R Fukuda, J Hasegawa, M. Ishida, T. Naka- jima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. Konx, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi. C. Pomelli, J. Ochterski, P. Ayala, K. Moromuka, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslwski, B. Setvanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Marton, D. Fox, T. Keith, M. Al-Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, J. Pople, Gaussian 03, Revision D.01 (Gaussian, Inc., Wallingford, 2004)

  34. C. Bayly, P. Cieplak, W. Cornell, P.A. Kollman, J. Phys. Chem. 97, 10269 (1993)

    CAS  Google Scholar 

  35. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)

    CAS  Google Scholar 

  36. D.M. York, T.A. Darden, L.G. Pedersen, J. Chem. Phys. 99, 8345 (1993)

    CAS  Google Scholar 

  37. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23, 327 (1977)

    CAS  Google Scholar 

  38. S. Gunasekaran, D. Uthra, Asian J. Chem. 20, 6310 (2008)

    CAS  Google Scholar 

  39. A. Gainar, J.S. Stevens, E. Suljoti, J. Xiao, R. Golnak, E.F. Aziz, S.L.M. Schroeder, J. Phys. Conf. Ser. 712, 012034 (2016)

    Google Scholar 

  40. M. Chis, M. Baia, C. Cainap, V. Chis, Stud. UBB Phys. 61, 9 (2016)

    Google Scholar 

  41. S. Su, C. Chang, P. Chang, S. Chou, J. Food Drug Anal. 11, 307 (2003)

    CAS  Google Scholar 

  42. H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71, 2703 (1949)

    CAS  Google Scholar 

  43. J. Velasco, P. Guardado, C. Carmona, M.A. Munoz, M. Balon, J. Chem. Soc. Faraday Trans. 94, 1469 (1998)

    CAS  Google Scholar 

  44. M.M. Al Omari, M.B. Zughul, J.E.D. Davies, A.A. Badwan, J. Pharm. Biomed. Anal. 41, 857 (2006)

    CAS  PubMed  Google Scholar 

  45. Q.F. Zhang, Z.T. Jiang, Y.X. Guo, R. Li, Spectrochim. Acta A 69, 65 (2008)

    Google Scholar 

  46. L. Liu, Q.X. Guo, J. Incl. Phenom. Macrocycl. Chem. 42, 1 (2002)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Deanship of Scientific Research at Al Al-Bayt University for the financial support to perform this project (No. 5/2013/2014; Date 09/01/2014). The authors also thank the Jordanian Pharmaceutical Manufacturing Co. (JPM)—Jordan for providing the Mebendazole sample as a gift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhri O. Yousef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, F.O., Ghanem, R., Al-Sou’od, K.A. et al. Investigation of spectroscopic properties and molecular dynamics simulations of the interaction of mebendazole with β-cyclodextrin. J IRAN CHEM SOC 18, 75–86 (2021). https://doi.org/10.1007/s13738-020-02006-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02006-w

Keywords

Navigation