Skip to main content
Log in

Influence of poly(butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The biodegradation is becoming one of the most imperative properties of plastic products nowadays to promote the sustainable development and the conservation of the environment. In this framework, the main objectives of this study are to prepare an environmental friendly high density polyethylene (HDPE) nanocomposite and investigate the effect of the incorporation of nanoparticles of calcium carbonate (NPCC) and poly butylene succinate (PBS) on the prepared nanocomposites. The nanocomposites of HDPE/PBS/NPCC samples were prepared by the addition of PBS and NPCC at (1, 2 and 4 wt%) to HDPE matrix using the injection molding technique. Morphological, mechanical, thermal, physical and biodegradation analysis were conducted on the nanocomposite samples. The mechanical properties of the samples were improved (the elongation at break by 35%, and the impact strength by 26%) compared to the neat HDPE. Moreover, the thermal and physical properties were enhanced by reinforcement NPCC to the nanocomposites. The biodegradation occurrence in the HDPE nanocomposite samples was proved by the Scanning Electron Microscope (SEM) observations and the weight loss percentage (0.265 wt% after 8 weeks).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmadi M, Behzad T, Bagheri R, Heidarian P (2018) Effect of cellulose nanofibers and acetylated cellulose nanofibers on the properties of low-density polyethylene/thermoplastic starch blends. Polym Int 67(8):993–1002

    CAS  Google Scholar 

  2. Muthuraj R, Misra M, Mohanty AK (2018) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 135(24):45726

    Google Scholar 

  3. Madhu G, Bhunia H, Bajpai PK, Nando GB (2016) Physico-mechanical properties and biodegradation of oxo-degradable HDPE/PLA blends. Polymer Sci Ser A 58(1):57–75

    CAS  Google Scholar 

  4. Carraher Jr CE (2016) Carraher’s polymer chemistry. CRC, Florida

    Google Scholar 

  5. Yuan Q, Shah JS, Bertrand KJ, Misra RDK (2009) On processing and impact deformation behavior of high density polyethylene (HDPE)–calcium carbonate Nanocomposites. Macromol Mater Eng 294(2):141–151

    CAS  Google Scholar 

  6. Albertsson A-C, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18(1):73–87

    CAS  Google Scholar 

  7. Orr IG, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65(1):97–104

    PubMed  Google Scholar 

  8. Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res 20(6):4146–4153

    CAS  Google Scholar 

  9. Ohtaki S, Maeda H, Takahashi T, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K (2006) Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl Environ Microbiol 72(4):2407–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dussud C, Hudec C, George M, Fabre P, Higgs P, Bruzaud S, Delort A-M, Eyheraguibel B, Meistertzheim A-L, Jacquin J (2018) Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front Microbiol 9:1571

    PubMed  PubMed Central  Google Scholar 

  11. Kannahi M, Rubini K (2012) Biodegradation of polythene bag by Aspergillus oryzae. Biosci Biotechnol Res Asia 9(1):423–426

    CAS  Google Scholar 

  12. Xu J, Guo B-H (2010) Microbial succinic acid, its polymer poly (butylene succinate), and applications. Plastics from bacteria. Springer, New York, pp 347–388

    Google Scholar 

  13. Stevens C (2013) Bio-based plastics: materials and applications. Wiley, New Jersey

    Google Scholar 

  14. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud 19(2):255–266

    Google Scholar 

  15. Sepet H, Tarakcioglu N, Misra R (2016) Determination of the mechanical, thermal and physical properties of nano-CaCO3 filled high-density polyethylene nanocomposites produced in an industrial scale. J Compos Mater 50(24):3445–3456

    CAS  Google Scholar 

  16. Zaman HU, Beg M (2014) Effect of CaCO3 contents on the properties of polyethylene nanocomposites sheets. Fibers Polym 15(4):839–846

    CAS  Google Scholar 

  17. Hu J, Wang Z-W, Yan S-M, Gao X-Q, Deng C, Zhang J, Shen K-z (2012) The morphology and tensile strength of high density polyethylene/nano-calcium carbonate composites prepared by dynamic packing injection molding. Polym-Plast Technol Eng 51(11):1127–1132

    CAS  Google Scholar 

  18. Bartczak Z, Argon A, Cohen R, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9):2347–2365

    CAS  Google Scholar 

  19. Argon A, Bartczak Z, Cohen R, Muratoglu O (2000) Experimental studies-7 novel mechanisms of toughening semi-crystalline polymers. ACS symposium series, vol 759. American Chemical Society, Washington, DC, pp 98–124

    Google Scholar 

  20. Lazzeri A, Zebarjad SM, Pracella M, Cavalier K, Rosa R (2005) Filler toughening of plastics. Part 1—the effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer 46(3):827–844

    CAS  Google Scholar 

  21. Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S, Watanabe T, Shinozaki Y, Tsushima S, Kitamoto HK (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2(1):40

    PubMed  PubMed Central  Google Scholar 

  22. Zebarjad SM, Sajjadi SA, Tahani M, Lazzeri A (2006) A study on thermal behaviour of HDPE/CaCO3 nanocomposites. J Achiev Mater Manuf Eng 17(1–2):173–176

    Google Scholar 

  23. Wunderlich B (1980) Chapter IX irreversible melting. Macromolecular physics, vol 3. Academic, New York, pp 128–191

    Google Scholar 

  24. Petchwattana N, Covavisaruch S, Chanakul S (2012) Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. J Polym Res 19(7):1–9

    CAS  Google Scholar 

  25. Sriyapai T, Siripoke S, Chansiri K, Petchwattana N, Somyoonsap P, Mettametha N, Swetwiwathana A, Aungpraphapornchai P, Pothivejkul K, Pringsulaka O (2014) Optimization for production of aliphatic polyester-degrading enzyme from actinomadura sp. strain tf1. Month 30 (2)

  26. Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res 1(6):313–316

    CAS  Google Scholar 

  27. Zhang Q-X, Yu Z-Z, Xie X-L, Mai Y-W (2004) Crystallization and impact energy of polypropylene/CaCO 3 nanocomposites with nonionic modifier. Polymer 45(17):5985–5994

    CAS  Google Scholar 

  28. Gao Y, Liu L, Zhang Z (2009) Mechanical performance of nano-CaCO 3 filled polystyrene composites. Acta Mech Solida Sin 22(6):555–562

    Google Scholar 

  29. Homklin R, Hongsriphan N (2013) Mechanical and thermal properties of PLA/PBS co-continuous blends adding nucleating agent. Energy Procedia 34:871–879

    CAS  Google Scholar 

  30. Aontee A, Sutapun W (2013) Effect of blend ratio on phase morphology and mechanical properties of high density polyethylene and poly (butylene succinate) blend. Adv Mater Res 747:555–559

    Google Scholar 

  31. Dastjerdi J, Motlagh EN, Garmabi H (2016) Crystallization, melting, and mechanical behavior of calcium carbonate-based nanocomposites of cross-linked high density polyethylene. Polym Compos 38(1):E402–E411

    Google Scholar 

  32. Fan D, Chang PR, Lin N, Yu J, Huang J (2011) Structure and properties of alkaline lignin-filled poly (butylene succinate) plastics. Iran Polym J 20:3–14

    CAS  Google Scholar 

  33. Mizuno S, Maeda T, Kanemura C, Hotta A (2015) Biodegradability, reprocessability, and mechanical properties of polybutylene succinate (PBS) photografted by hydrophilic or hydrophobic membranes. Polym Degrad Stab 117:58–65

    CAS  Google Scholar 

  34. Chafidz A, Kaavessina M, Al-Zahrani S, Al-Otaibi MN (2016) Rheological and mechanical properties of polypropylene/calcium carbonate nanocomposites prepared from masterbatch. J Thermoplast Compos Mater 29(5):593–622

    CAS  Google Scholar 

  35. Khalaf MN (2015) Mechanical properties of filled high density polyethylene. J Saudi Chem Soc 19(1):88–91

    Google Scholar 

  36. Cao XV, Ismail H, Rashid AA, Takeichi T (2012) Kenaf powder filled recycled high density polyethylene/natural rubber biocomposites: the effect of filler content. Int J Integr Eng 4(1):22–25

    Google Scholar 

  37. Eiras D, Pessan LA (2009) Mechanical properties of polypropylene/calcium carbonate nanocomposites. Mater Res 12(4):517–522

    CAS  Google Scholar 

  38. Zuiderduin W, Westzaan C, Huetink J, Gaymans R (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44(1):261–275

    CAS  Google Scholar 

  39. Hongsriphan N, Burirat T, Niratsungnern P, Trongteng S (2013) Influence of calcium carbonate nanoparticles on mechanical behavior of poly (lactic acid)/poly (butylene succinate) blend. J Met Mater Miner 23(1):1–15

    Google Scholar 

  40. Wang X, Ming H, Yin H (2015) Fabrication and properties of HDPE/CF/CaCO3/PE-g-MAH quaternary composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p 012110

  41. Guo Q (2016) Polymer morphology: principles, characterization, and processing. Wiley, New Jersey

    Google Scholar 

  42. Chrissafis K, Paraskevopoulos K, Pavlidou E, Bikiaris D (2009) Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485(1):65–71

    CAS  Google Scholar 

  43. Elleithy RH, Ali I, Ali MA, Al-Zahrani S (2011) High density polyethylene/micro calcium carbonate composites: a study of the morphological, thermal, and viscoelastic properties. J Appl Polym Sci 119(4):2494–2494

    CAS  Google Scholar 

  44. Chafidz A, Ali I, Mohsin MA, Elleithy R, Al-Zahrani S (2012) Atomic force microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites. J Polym Res 19(4):1–17

    Google Scholar 

  45. Sahebian S, Zebarjad SM, Khaki JV, Sajjadi SA (2009) The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. J Mater Process Technol 209(3):1310–1317

    CAS  Google Scholar 

  46. Dastjerdi J, Garmabi H (2016) Influence of Nano-sized calcium carbonate on adhesion of HDPE/cross-linked high density polyethylene multilayer structures. Adv Polym Technol 37(3):878–889

    Google Scholar 

  47. de Oliveira AG, da Silva ALN, de Sousa AMF, Leite MCAM, Jandorno JC, Escócio VA (2016) Composites based on green high-density polyethylene, polylactide and nanosized calcium carbonate: effect of the processing parameter and blend composition. Mater Chem Phys 181:344–351

    Google Scholar 

  48. R-y C, Zou W, H-c Z, G-z Z, Yang Z-t, Jin G, J-p Q (2015) Thermal behavior, dynamic mechanical properties and rheological properties of poly (butylene succinate) composites filled with nanometer calcium carbonate. Polym Test 42:160–167

    Google Scholar 

  49. Muthuraj R, Misra M, Mohanty AK (2014) Biodegradable poly (butylene succinate) and poly (butylene adipate-co-terephthalate) blends: reactive extrusion and performance evaluation. J Polym Environ 22(3):336–349

    CAS  Google Scholar 

  50. Yang J, Qin G, Liang J (2014) Flow properties and extensional viscosity prediction of high-density polyethylene and poly (butylene succinate) blends. J Thermoplast Compos Mater 29(4):479–493

    Google Scholar 

  51. DeArmitt C, Hancock M (2003) Filled thermoplastics

  52. Liu H, Dong L, Xie H, Wan L, Liu Z, Xiong C (2013) Ultraviolet light aging properties of PVC/CaCO3 composites. J Appl Polym Sci 127(4):2749–2756

    CAS  Google Scholar 

  53. de Santi CR, Correa AC, Manrich S (2006) Films of post-consumer polypropylene composites for the support layer in synthetic paper. Polímeros 16(2):123–128

    Google Scholar 

  54. Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67(6):778–788

    CAS  PubMed  Google Scholar 

  55. Dojnov B, Grujić M, Perčević B, Vujčić Z (2015) Enhancement of amylase production using carbohydrates mixtures from triticale in Aspergillus sp. J Serb Chem Soc 80(10):1279–1288

    CAS  Google Scholar 

  56. Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21(2):575–579

    CAS  Google Scholar 

  57. Nowak B, Pająk J, Drozd-Bratkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegradation 65(6):757–767

    CAS  Google Scholar 

  58. Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15(4):173–183

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chaisu K, Siripholvat V, Chiu C-H (2015) New method of rapid and simple colorimetric assay for detecting the enzymatic degradation of poly lactic acid plastic films. Int J Life Sci Biotechnol Pharm Res 4(1):57–61

    CAS  Google Scholar 

  60. Li F, Hu X, Guo Z, Wang Z, Wang Y, Liu D, Xia H, Chen S (2011) Purification and characterization of a novel poly (butylene succinate)-degrading enzyme from Aspergillus sp. XH0501-a. World J Microbiol Biotechnol 27(11):2591–2596

    CAS  Google Scholar 

  61. te Biesebeke R, van Biezen N, De Vos W, Van Den Hondel C, Punt P (2005) Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Appl Microbiol Biotechnol 67(1):75–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kareem M. Abd El-Rahman or Sherif Kandil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Rahman, K.M., Abdellah Ali, S.F., Khalil, A. et al. Influence of poly(butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. J Polym Res 27, 231 (2020). https://doi.org/10.1007/s10965-020-02217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02217-y

Keywords

Navigation