Skip to main content

Advertisement

Log in

Assessment of surface resistance reduction on polypyrrole-coated composite bipolar plates

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New applications of electronic devices come with integrated functionalization, size diminishment, and ultralight weight. An alternative electricity source is also demanded for effective commercialization of devices. Direct Methanol Fuel Cells (DMFCs) have the potential to play a major role as energy generators for portable applications, thus they can be a choice for new generation electronic devices. Fabricating bipolar plates (BPs) to meet the application requirements is received great attention due to their lightweight and possibility for mass production. This research focused on using polypropylene/carbon filler composites as BP materials, offering a major advantage of mass production by a conventional low-cost injection moulding technique. The purpose of this research is to inspect the feasibility of polypyrrole (PPy) coating on the composite BPs via a chemical polymerization of PPy. To accomplish effective coating, composite BPs were surface-pretreated by UV photografting prior to the PPy coating process. Effects of surface treatment and polymerization conditions, such as time of treatment or polymerization and doping agent, were investigated via physicochemical characterizations using several techniques; Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle measurement, and scanning electron microscopy. Indispensable determination is an electrical conductivity measurement of the composite BP surfaces. Experimental results confirm successful PPy coating, however; the adhesion test indicates that the surface interaction between the PPy layer and the BP surface needs further improvements before applying the promising BP to commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghanbarian A, Kermani MJ, Scholta J, Abdollahzadeh M (2018) Polymer electrolyte membrane fuel cell flow field design criteria – application to parallel serpentine flow patterns. Energy Convers Manag 166:281–296. https://doi.org/10.1016/j.enconman.2018.04.018

    Article  CAS  Google Scholar 

  2. Rahaman M, Aldalbahi A, Govindasami P, Khanam N, Bhandari S, Feng P, Altalhi T (2017) A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models. Polymers (Basel) 9:1–17. https://doi.org/10.3390/polym9100527

    Article  CAS  Google Scholar 

  3. Marsden AJ, Papageorgiou DG, Vallés C et al (2018) Electrical percolation in graphene-polymer composites. 2D Mater 5:1–19. https://doi.org/10.1088/2053-1583/aac055

  4. Zhan C, Yu G, Lu Y, Wang L, Wujcik E, Wei S (2017) Conductive polymer nanocomposites: a critical review of modern advanced devices. J Mater Chem C 5:1569–1585. https://doi.org/10.1039/c6tc04269d

    Article  CAS  Google Scholar 

  5. Bhosale AC, Rengaswamy R (2019) Interfacial contact resistance in polymer electrolyte membrane fuel cells: recent developments and challenges. Renew Sust Energ Rev 115:109351. https://doi.org/10.1016/j.rser.2019.109351

    Article  CAS  Google Scholar 

  6. Wilberforce T, Ijaodola O, Ogungbemi E, Khatib FN, Leslie T, el-Hassan Z, Thomposon J, Olabi AG (2019) Technical evaluation of proton exchange membrane (PEM) fuel cell performance – a review of the effects of bipolar plates coating. Renew Sust Energ Rev 113:109286. https://doi.org/10.1016/j.rser.2019.109286

    Article  CAS  Google Scholar 

  7. Amirazodi K, Sharif M, Bahrani M (2019) Polypyrrole doped graphene oxide reinforced epoxy nanocomposite with advanced properties for coatings of mild steel. J Polym Res 26. https://doi.org/10.1007/s10965-019-1905-3

  8. Prabunathan P, Vasanthakumar A, Manoj M, Hariharan A, Alagar M (2020) Polypyrrole inter-layered low temperature curing benzoxazine matrices with enhanced thermal and dielectric properties. J Polym Res 27:20–22. https://doi.org/10.1007/s10965-020-2022-z

    Article  CAS  Google Scholar 

  9. Ismail HK, Alesary HF, Mohammed MQ (2019) Synthesis and characterisation of polyaniline and/or MoO2 /graphite composites from deep eutectic solvents via chemical polymerisation. J Polym Res 26. https://doi.org/10.1007/s10965-019-1732-6

  10. Xiong S, Zhang X, Wang R, Lu Y, Li H, Liu J, Li S, Qiu Z, Wu B, Chu J, Wang X, Zhang R, Gong M, Chen Z (2019) Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. J Polym Res 26:1–8. https://doi.org/10.1007/s10965-019-1749-x

    Article  CAS  Google Scholar 

  11. Zhang L, Du W, Nautiyal A et al (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61:303–352. https://doi.org/10.1007/s40843-017-9206-4

    Article  CAS  Google Scholar 

  12. Xie X, Zhou X (2011) Well encapsulated hollow borosilicate glass sphere@polypyrrole composite with low density, designable thickness and conductivity. Colloids Surfaces A Physicochem Eng Asp 386:158–165. https://doi.org/10.1016/j.colsurfa.2011.07.015

    Article  CAS  Google Scholar 

  13. Mohsin MEA, Elias M, Arsad A et al (2017) Electrical conductivity, thermal, rheological and morphological characteristics of grafted blend of Polypyrole and polypropylene. Chem Eng Trans 56:1375–1380. https://doi.org/10.3303/CET1756230

    Article  Google Scholar 

  14. Truong V-T, Ennis BC, Turner TG, Jenden CM (1992) Thermal stability of polypyrroles. Polym Int 27:187–195. https://doi.org/10.1002/pi.4990270213

    Article  Google Scholar 

  15. Qiao YS, Shen LZ, Guo Y, Liu JH, Meng SM (2015) Polypyrrole films prepared on self-assembled silane monolayers and applications. Mater Technol 30:182–188. https://doi.org/10.1179/1753555714Y.0000000245

    Article  CAS  Google Scholar 

  16. Bae GY, Jang J, Jeong YG, Lyoo WS, Min BG (2010) Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups. J Colloid Interface Sci 344:584–587. https://doi.org/10.1016/j.jcis.2010.01.024

    Article  CAS  PubMed  Google Scholar 

  17. Balart J, Fombuena V, España JM, Sánchez-Nácher L, Balart R (2012) Improvement of adhesion properties of polypropylene substrates by methyl methacrylate UV photografting surface treatment. Mater Des 33:1–10. https://doi.org/10.1016/j.matdes.2011.06.069

    Article  CAS  Google Scholar 

  18. Budnikov SY, Smirnov AA, Vorozhtsov DL, Salomatina EV, Afanasiev AV, Bityurin NM, Smirnova LA (2020) Copolymers of isobornylacrylate with methylmethacrylate or acrylonitrile and its optical properties. J Polym Res 27. https://doi.org/10.1007/s10965-019-1904-4

  19. Aboudzadeh MA, Mirabedini SM, Atai M (2007) Effect of silane-based treatment on the adhesion strength of acrylic lacquers on the PP surfaces. Int J Adhes Adhes 27:519–526. https://doi.org/10.1016/j.ijadhadh.2006.09.012

    Article  CAS  Google Scholar 

  20. Qiao Y, Shen L, Guo Y (2012) Preparation of polypyrrole films on insulating substrates by self-assembled monolayers. Mater Lett 86:38–41. https://doi.org/10.1016/j.matlet.2012.07.046

    Article  CAS  Google Scholar 

  21. He X, Qu Y, Peng J, Peng T, Qian Z (2017) A novel botryoidal aramid fiber reinforcement of a PMMA resin for a restorative biomaterial. Biomater Sci 5:808–816. https://doi.org/10.1039/c6bm00939e

    Article  CAS  PubMed  Google Scholar 

  22. Sugumaran D, Juhanni K, Karim A (2017) Removal of copper (II) ion using chitosan-graft-poly (methyl methacrylate) as adsorbent. eProceedings Chem 2:1–11. https://doi.org/10.13140/RG.2.2.33911.93601

    Article  Google Scholar 

  23. Pardeshi PM, Mungray AA (2019) Photo-polymerization as a new approach to fabricate the active layer of forward osmosis membrane. Sci Rep 9:1937. https://doi.org/10.1038/s41598-018-36346-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alves P, Pinto S, Kaiser JP, Bruinink A, de Sousa HC, Gil MH (2011) Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloids Surf B: Biointerfaces 82:371–377. https://doi.org/10.1016/j.colsurfb.2010.09.021

    Article  CAS  PubMed  Google Scholar 

  25. Mingbo H, Xingzhou H (1987) Photo-stabilization of polypropylene film by surface photo-grafting. Polym Degrad Stab 18:321–328. https://doi.org/10.1016/0141-3910(87)90018-8

    Article  Google Scholar 

  26. Rahimpour A, Madaeni SS, Zereshki S, Mansourpanah Y (2009) Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl Surf Sci 255:7455–7461. https://doi.org/10.1016/j.apsusc.2009.04.021

    Article  CAS  Google Scholar 

  27. Launer PJ, Arkles B (2013) Infrared analysis of Orgaonsilicon compounds. Silicon Compd Silanes Silicones: 175–178. https://www.gelest.com/wp-content/uploads/5000A_Section1_InfraredAnalysis.pdf

  28. Talavera-Pech WA, Esparza-Ruiz A, Quintana-Owen P, Vilchis-Nestor AR, Carrera-Figueiras C, Ávila-Ortega A (2016) Effects of different amounts of APTES on physicochemical and structural properties of amino-functionalized MCM-41-MSNs. J Sol-Gel Sci Technol 80:697–708. https://doi.org/10.1007/s10971-016-4163-4

    Article  CAS  Google Scholar 

  29. Brezoi D (2010) Polypyrrole films prepared by chemical oxidation of pyrrole in aqueous FeCl3 solution. J Sci Arts 1:53–58. https://doi.org/10.1016/j.urolonc.2015.05.032

    Article  Google Scholar 

  30. Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341. https://doi.org/10.1016/j.eurpolymj.2007.03.045

    Article  CAS  Google Scholar 

  31. Beelen E, Riga J, Verbist JJ (1991) Electrochemical doping of polypyrrole: XPS study. Synthetic Metals 41:449–454. https://doi.org/10.1016/0379-6779(91)91105-J

    Article  CAS  Google Scholar 

  32. Rajagopalan R, Iroh JO (2003) Characterization of polyaniline-polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study. Appl Surf Sci 218:58–69. https://doi.org/10.1016/S0169-4332(03)00579-8

    Article  CAS  Google Scholar 

  33. Lee JH, Jang YK, Hong CE, Kim NH, Li P, Lee HK (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sources 193:523–529. https://doi.org/10.1016/j.jpowsour.2009.04.029

    Article  CAS  Google Scholar 

  34. Patois T, Lakard B, Monney S, Roizard X, Fievet P (2011) Characterization of the surface properties of polypyrrole films: influence of electrodeposition parameters. Synth Met 161:2498–2505. https://doi.org/10.1016/j.synthmet.2011.10.003

    Article  CAS  Google Scholar 

  35. Wu D, Gao X, Sun J, Wu D, Liu Y, Kormakov S, Zheng X, Wu L, Huang Y, Guo Z (2017) Spatial confining forced network assembly for preparation of high-performance conductive polymeric composites. Compos Part A Appl Sci Manuf 102:88–95. https://doi.org/10.1016/j.compositesa.2017.07.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express our appreciation for the financial support received from the National Science and Technology Development Agency. We also thank Asst. Prof. Dr. Chaiwat Prapainainar from Faculty of Engineering, KMUTNB for his kind assistance during this research work. Finally, our team would like to thank Centre for Materials & Surface Science, La Trobe University, Australia for allowing us to use X-ray Photoelectron Spectrometer (XPS) for the chemical characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rungsima Yeetsorn.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeetsorn, R., Prissanaroon-Ouajai, W. & Onyu, K. Assessment of surface resistance reduction on polypyrrole-coated composite bipolar plates. J Polym Res 27, 229 (2020). https://doi.org/10.1007/s10965-020-02207-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02207-0

Keywords

Navigation