Skip to main content
Log in

Analysis of the Antiplane Problem with an Embedded Zero Thickness Layer Described by the Gurtin-Murdoch Model

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The antiplane problem of an infinite isotropic elastic medium subjected to a far-field load and containing a zero thickness layer of arbitrary shape described by the Gurtin-Murdoch model is considered. It is shown that, under the antiplane assumptions, the governing equations of the complete Gurtin-Murdoch model are inconsistent for non-zero surface tension. For the case of vanishing surface tension, the analytical integral representations for the elastic fields and the dimensionless parameter that governs the problem are introduced. The solution of the problem is reduced to the solution of the hypersingular integral equation written in terms of elastic stress of the layer. For the case of a layer along a straight segment, theoretical analysis of the hypersingular equation is performed and asymptotic behavior of the elastic fields near the tips is studied. The appropriate numerical solution techniques are discussed and several numerical results are presented. Additionally, it is demonstrated that the problem under study is closely related to the specific case of the well-known problem of a thin and stiff elastic inhomogeneity embedded into a homogeneous elastic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Other transcriptions of the author name, e.g., Vencel, Ventsel or Wentzell, can also be found in the literature.

References

  1. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    MATH  Google Scholar 

  3. Miller, R.E.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    ADS  Google Scholar 

  4. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535 (2003)

    ADS  Google Scholar 

  5. Duan, H.L., Wang, J., Huang, Z.P., Luo, Z.Y.: Stress concentration tensors of inhomogeneities with interface effects. Mech. Mater. 37(7), 723–736 (2005)

    Google Scholar 

  6. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  7. He, L.H., Li, Z.R.: Impact of surface stress on stress concentration. Int. J. Solids Struct. 43(20), 6208–6219 (2006)

    MATH  Google Scholar 

  8. Lim, C.W., Li, Z.R., He, L.H.: Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. Int. J. Solids Struct. 43(17), 5055–5065 (2006)

    MATH  Google Scholar 

  9. Mi, C., Kouris, D.: Nanoparticles under the influence of surface/interface elasticity. Mech. Mater. Struct. 1(4), 763–791 (2006)

    Google Scholar 

  10. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56(6), 2298–2327 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Ru, C.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China, Phys. Mech. Astron. 53(3), 536–544 (2010)

    ADS  MathSciNet  Google Scholar 

  12. Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L.: Elastic interaction of spherical nanoinhomogeneities with Gurtin–Murdoch type interfaces. J. Mech. Phys. Solids 59(9), 1702–1716 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L.: Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces. Int. J. Solids Struct. 50(7–8), 1141–1153 (2013)

    Google Scholar 

  14. Kushch, V.I.: Stress field and effective elastic moduli of periodic spheroidal particle composite with Gurtin-Murdoch interface. Int. J. Eng. Sci. 132, 79–96 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Xu, Z., Zheng, Q.: Micro-and nano-mechanics in China: a brief review of recent progress and perspectives. Sci. China, Phys. Mech. Astron. 61(7), 1–14 (2018)

    ADS  Google Scholar 

  16. Zhu, Y., Wei, Y., Guo, X.: Gurtin-Murdoch surface elasticity theory revisit: an orbital-free density functional theory perspective. J. Mech. Phys. Solids 109, 178–197 (2017)

    ADS  MathSciNet  Google Scholar 

  17. Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A, Solids 28(5), 926–934 (2009)

    ADS  MATH  Google Scholar 

  18. Kushch, V.I., Chernobai, V.S., Mishuris, G.S.: Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int. J. Eng. Sci. 84, 79–94 (2014)

    Google Scholar 

  19. Dai, M., Schiavone, P., Gao, C.: Prediction of the stress field and effective shear modulus of composites containing periodic inclusions incorporating interface effects in anti-plane shear. J. Elast. 125(2), 217–230 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity. Contin. Mech. Thermodyn. 28, 407–422 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Hamilton, J.C., Wolfer, W.G.: Theories of surface elasticity for nanoscale objects. Surf. Sci. 603, 1284–1291 (2009)

    ADS  Google Scholar 

  23. Koenig, S.P., Boddeti, N.G., Dunn, M.L., Bunch, J.S.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)

    ADS  Google Scholar 

  24. Young, R.J., Liu, M., Kinloch, I.A., Li, S., Zhao, X., Vallés, C., Papageorgiou, D.G.: The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos. Sci. Technol. 154, 110–116 (2018)

    Google Scholar 

  25. Manikas, A.C., Pastore Carbone, M.G., Woods, C.R., Wang, Y., Souli, I., Anagnostopoulos, G., Hadjinicolaou, M., Novoselov, K.S., Galiotis, C.: Stress transfer at the nanoscale on graphene ribbons of regular geometry. Nanoscale 11, 14354–14361 (2019)

    Google Scholar 

  26. Wu, C.H., Wang, M.L.: Configurational equilibrium of circular-arc cracks with surface stress. Int. J. Solids Struct. 38(24–25), 4279–4292 (2001)

    MATH  Google Scholar 

  27. Oh, E.-S., Walton, J.R., Slattery, J.C.: A theory of fracture based upon an extension of continuum mechanics to the nanoscale. J. Appl. Mech. 73, 792–798 (2006)

    ADS  MATH  Google Scholar 

  28. Kim, C.I., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. J. Appl. Mech. 77(2), 021011 (2010)

    ADS  Google Scholar 

  29. Walton, J.R.: A note on fracture models incorporating surface elasticity. J. Elast. 109(1), 95–102 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Wang, X.: A mode III arc-shaped crack with surface elasticity. Z. Angew. Math. Phys. 66, 1987–2000 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Intarit, P., Senjuntichai, T., Rungamornrat, J., Rajapakse, R.K.N.D.: Penny-shaped crack in elastic medium with surface energy effects. Acta Mech. 228, 617–630 (2017)

    MathSciNet  Google Scholar 

  32. Zemlyanova, A.Y.: A straight mixed mode fracture with the Steigmann–Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65–86 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Leguillon, D., Sanchez-Palencia, E.: Computation of Singular Solutions in Elliptic Problems and Elasticity. Masson, Paris (1987)

    MATH  Google Scholar 

  34. Yosibash, Z.: Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation. Springer, New York (2012)

    MATH  Google Scholar 

  35. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Hague, Netherland (1987)

    MATH  Google Scholar 

  36. Melan, E.: Ein Beitrag zur Theorie geschweisster Verbindungen. Ing.-Arch. 3(2), 123–129 (1932)

    MATH  Google Scholar 

  37. Reissner, E.: Note on the problem of the distribution of stress in a thin stiffened elastic sheet. Proc. Natl. Acad. Sci. USA 26, 300–305 (1940)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Pasternak, Y.M., Sulim, G.T.: Plane problem of elasticity for an anisotropic body with doubly periodic systems of thin inhomogeneities. Mech. Solids 49(2), 162–174 (2014)

    ADS  Google Scholar 

  39. Erdogan, F., Gupta, G.D.: Stresses near a flat inclusion in bonded dissimilar materials. Int. J. Solids Struct. 8(4), 533–547 (1972)

    MATH  Google Scholar 

  40. Caillerie, D., Nedelec, J.C.: The effect of a thin inclusion of high rigidity in an elastic body. Math. Methods Appl. Sci. 2(3), 251–270 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Sulim, G.T.: Antiplane problem for a system of linear inclusions in an isotropic medium. Appl. Math. Mech. 45(2), 223–230 (1981)

    MathSciNet  MATH  Google Scholar 

  42. Kanaun, S.K.: On singular models of a thin inclusion in a homogeneous elastic medium. J. Appl. Math. Mech. 48(1), 50–58 (1984)

    MATH  Google Scholar 

  43. Li, Q., Ting, T.C.T.: Line inclusions in anisotropic elastic solids. J. Appl. Mech. 56(3), 556–563 (1989)

    ADS  MATH  Google Scholar 

  44. Vil’chevskaya, Y.N., Kanaun, S.K.: Integral equations for a thin inclusion in a homogeneous elastic medium. Appl. Math. Mech. 56(2), 235–243 (1992)

    MathSciNet  MATH  Google Scholar 

  45. Bessoud, A., Krasucki, F., Serpilli, M.: Asymptotic analysis of shell-like inclusions with high rigidity. J. Elast. 103(2), 153–172 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Vasil’ev, K.V., Sulym, H.T.: Elastic equilibrium of a space containing a thin curved elastic inclusion in longitudinal shear. J. Math. Sci. 212(1), 83–97 (2016)

    MathSciNet  Google Scholar 

  47. Koiter, W.T.: On the diffusion of load from a stiffener into a sheet. Q. J. Mech. Appl. Math. 8(2), 164–178 (1955)

    MathSciNet  MATH  Google Scholar 

  48. Muki, R., Sternberg, E.: Transfer of load from an edge-stiffener to a sheet—a reconsideration of Melan’s problem. J. Appl. Mech. 34(3), 679–686 (1967)

    ADS  Google Scholar 

  49. Erdogan, F., Gupta, G.D.: The problem of an elastic stiffener bonded to a half plane. J. Appl. Mech. 38, 937–941 (1971)

    ADS  MATH  Google Scholar 

  50. Mkhitaryan, S.M., Mkrtchyan, M.S., Kanetsyan, E.G.: On a method for solving Prandtl’s integro-differential equation applied to problems of continuum mechanics using polynomial approximations. Z. Angew. Math. Mech. 97(6), 639–654 (2017)

    MathSciNet  Google Scholar 

  51. Delale, F., Erdogan, F.: The crack problem for a half plane stiffened by elastic cover plate. Int. J. Solids Struct. 18(5), 381–395 (1982)

    MATH  Google Scholar 

  52. Wang, Z.Y., Zhang, H.T., Chou, Y.T.: Stress singularity at the tip of a rigid line inhomogeneity under antiplane shear loading. J. Appl. Mech. 53(2), 459–461 (1986)

    ADS  MATH  Google Scholar 

  53. Markenscoff, X., Ni, L., Dundurs, J.: The interface anticrack and Green’s functions for interacting anticracks and cracks/anticracks. J. Appl. Mech. 61(4), 797–802 (1994)

    ADS  MATH  Google Scholar 

  54. Dal Corso, F., Bigoni, D., Gei, M.: The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full field solution and asymptotics. J. Mech. Phys. Solids 56(3), 815–838 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Simonenko, I.B.: Electrostatic problems for non uniformal media. The case of a thin dielectric with a high dielectric constant. I and II. Differ. Equ. 10, 223–229 (1975), 11, 1398–1404 (1974)

    MATH  Google Scholar 

  56. Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33(6), 309–323 (2001)

    Google Scholar 

  57. Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with Steigmann–Ogden interface: local fields, neutrality, and Maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98 (2018)

    Google Scholar 

  58. Muskhelishvili, N.: Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics, 2nd edn. Aeronautical Research Laboratories Translation, vol. 12. Dept. of Supply and Development, Melbourne (1949). Translated by J.R.M. Radok and W.G. Woolnough

    MATH  Google Scholar 

  59. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)

    Google Scholar 

  60. Martin, P.: End-point behaviour of solutions to hypersingular integral equations. Proc. R. Soc., Math. Phys. Sci. 432(1885), 301–320 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Martin, P.: Exact solution of a simple hypersingular integral equation. J. Integral Equ. Appl. 4(2), 197–204 (1992)

    MathSciNet  MATH  Google Scholar 

  62. Mandal, B.N., Chakrabarti, A.: Applied Singular Integral Equations. CRC Press and Science Publishers, Boca Raton (2011)

    MATH  Google Scholar 

  63. Linkov, A., Mogilevskaya, S.: On the theory of complex hypersingular equations. In: Atluri, S.N., Yagawa, G., Cruse, T. (eds.) Computational Mechanics ’95, pp. 2836–2840. Springer, Berlin, Heidelberg (1995)

    Google Scholar 

  64. Linkov, A.M.: Boundary Integral Equations in Elasticity Theory. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  65. Linkov, A.M., Mogilevskaya, S.G.: Complex hypersingular BEM in plane elasticity problems. In: Sladek, V., Sladek, J. (eds.) Singular Integrals in Boundary Element Method, pp. 299–364. Computational Mechanics Publication, Southampton (1998). Chapter 9

    Google Scholar 

  66. Aleksandrov, V.M., Mkhitaryan, S.M.: Contact Problems for Bodies with Thin Coatings and Interlayers. Nauka, Moscow (1983). In Russian

    Google Scholar 

  67. Goldstein, G.R.: Derivation and physical interpretation of general boundary conditions. Adv. Differ. Equ. 11(4), 457 (2006)

    MathSciNet  MATH  Google Scholar 

  68. Nicaise, S., Li, H., Mazzucato, A.: Regularity and a priori error analysis of a Ventcel problem in polyhedral domains. Math. Methods Appl. Sci. 40, 1625–1636 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  69. Bonnaillie-Noël, V., Dambrine, M., Hérau, F., Vial, G.: On generalized Ventcel’s type boundary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal. 42(2), 931–945 (2010)

    MathSciNet  MATH  Google Scholar 

  70. Ventcel, A.D.: On boundary conditions for multi-dimensional diffusion processes. Theory Probab. Appl. 4(2), 164–177 (1959)

    MathSciNet  MATH  Google Scholar 

  71. Costabel, M., Dauge, M.: Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems. Math. Nachr. 162(1), 209–237 (1993)

    MathSciNet  MATH  Google Scholar 

  72. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program, Boston (1985)

    MATH  Google Scholar 

  73. Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)

    MATH  Google Scholar 

  74. Kondrat’ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Mosc. Math. Soc. 16, 227–313 (1967)

    MathSciNet  MATH  Google Scholar 

  75. Golberg, M.A.: The convergence of several algorithms for solving integral equations with finite part integrals I. J. Integral Equ. 5, 329–340 (1983)

    MathSciNet  MATH  Google Scholar 

  76. Kaya, A.C., Erdogan, F.: On the solution of integral equations with strongly singular kernels. Q. Appl. Math. XLV(1), 105–122 (1987)

    MathSciNet  MATH  Google Scholar 

  77. Gradshteĭn, I.S., Ryzhik, I.M., Jeffrey, A., Zwillinger, D.: Table of Integrals, Series and Products, 7th edn. Academic Press, Oxford (2007)

    Google Scholar 

Download references

Acknowledgements

The first author (S.B.) gratefully acknowledges the support provided by the International Student Work Opportunity Program (ISWOP), University of Minnesota. The second author (S.M.) gratefully acknowledges the support from the Theodore W. Bennett Chair, University of Minnesota and the Isaac Newton Institute for Mathematical Sciences (INI) for support and hospitality during the programme CAT, when work on a part of this paper was undertaken. This part of work was supported by: EPSRC grant number EP/R014604/1. The support of the Simons Foundation through Simons INI Fellowship is also gratefully acknowledged. The research by V.M. and S.J.-A. was conducted with the support of the Spanish Ministry of Science, Innovation and Universities and European Regional Development Fund (Project PGC2018-099197-B-I00).The authors are also grateful to Prof. Eric Bonnetier (Institut Fourier, Université Grenoble-Alpes) for pointing out the connections between the boundary conditions for the present problem and the Ventcel boundary condition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baranova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Classes of Functions

Appendix: Classes of Functions

For the case of the smooth contour \(L\) with two tips \(c=a\), \(c=b\), the classes of functions considered in the present paper are defined as, see [58]:

  • \(H\) class

The function \(\varphi (t )\) is said to belong to \(H\) class on \(L\), if for any two points \(t_{1},\,t_{2}\in L\) it satisfies, for some \(0<\alpha \), the following Hölder condition:

$$ \bigl\vert \varphi (t_{2} )-\varphi (t_{1} ) \bigr\vert \leq A \vert t_{2}-t_{1} \vert ^{\alpha } $$
(91)

in which \(A\) is an arbitrary positive constant. More specifically, it could be said that the function \(\varphi (t )\) belongs to \(H (\alpha )\) class.

  • \(H^{*}\) class

The function \(\varphi (t )\) is said to belong to \(H^{*}\) class on \(L\), if it satisfies Hölder condition with some \(\alpha \) on every closed part of \(L\) that does not contain its tips and near the tips \(c=a\), \(c=b\)

$$ \varphi (t )= \frac{\varphi ^{*} (t )}{ (t-c )^{\beta }}, \quad 0 \leq \beta < 1 $$
(92)

where \(\varphi ^{*} (t )\in H\) class.

  • \(h_{0}\) and \(h_{2}\) classes

These classes are particular cases of more general class \(h (c_{1},\ldots ,c_{q} )\) introduced in [58] for the consideration of the Hilbert problems and singular integral equations for a union of smooth contours, see §79, 81, 88 in [58]. The definition of the latter class is more involved and require introduction of the material that is beyond the scope of the present paper. So, instead of giving formal definition of class \(h (c_{1},\ldots ,c_{q} )\), we give its interpretation for the application related to our problem, see also the discussion on page 251 of [58].

In our case, the condition that the function (that belongs to \(H\) class at any internal point of \(L\)) belongs to \(h_{2}\) class simply means that this function is bounded near both tips of \(L\), while the condition that the function belongs to \(h_{0}\) class means that no such restrictions are required on the behavior of the function at any of two tips.

Finally, we reproduce the following result of §20 in [58] that was used in Sect. 5.1: if the function \(\varphi (t )\) belongs to \(H (\alpha )\) class on a smooth contour \(L\), then

$$ \varPhi (t_{0} )=\frac{1}{2\pi i} \int \limits _{L} \frac{\varphi (t )dt}{t-t_{0}} $$
(93)

also satisfies everywhere on \(L\), except in the neighborhood of those of its tips at which \(\varphi (t )\neq 0\), the \(H (\alpha )\) condition for \(\alpha <1\) and \(H (1-\varepsilon )\) condition for \(\alpha =1\), where \(\varepsilon \) is an arbitrary small parameter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranova, S., Mogilevskaya, S.G., Mantič, V. et al. Analysis of the Antiplane Problem with an Embedded Zero Thickness Layer Described by the Gurtin-Murdoch Model. J Elast 140, 171–195 (2020). https://doi.org/10.1007/s10659-020-09764-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09764-x

Mathematics Subject Classification

Keywords

Navigation