Skip to main content
Log in

The Asymptotically Sharp Geometric Rigidity Interpolation Estimate in Thin Bi-Lipschitz Domains

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This work is part of a program of development of asymptotically sharp geometric rigidity estimates for thin domains. A thin domain in three dimensional Euclidean space is roughly a small neighborhood of regular enough two dimensional compact surface. We prove an asymptotically sharp geometric rigidity interpolation inequality for thin domains with little regularity. In contrast to that celebrated Friesecke et al. rigidity estimate [Commun. Pure Appl. Math. 55(11):1461–1506, 2002] for plates, our estimate holds for any proper rotations \(\boldsymbol {R}\in SO(3)\). Namely, the estimate bounds the \(L^{p}\) distance of the gradient of any \(\boldsymbol {y}\in W^{1,p}(\Omega ,\mathbb{R}^{3})\) field from any constant proper rotation \(\boldsymbol {R}\in SO(3)\), in terms of the average \(L^{p}\) distance (nonlinear strain) of the gradient \(\nabla \boldsymbol {y}\) from the rotation group \(SO(3)\), and the average \(L^{p}\) distance of the field itself from the set of rigid motions corresponding to the rotation \(\boldsymbol {R}\). There are several remarkable facts about the estimate: 1. The constants in the estimate are sharp in terms of the domain thickness scaling for any thin domains with the required regularity. 2. In the special cases when the domain has positive or negative Gaussian curvature, the inequality reduces the problem of estimating the gradient \(\nabla \boldsymbol {y}\) in terms of the prototypical nonlinear strain \(\int _{\Omega }\mathrm{dist}^{p}(\nabla \boldsymbol {y}(x),SO(3))dx\) to the easier problem of estimating only the vector field \(\boldsymbol {y}\) in terms of the nonlinear strain without any loss in the constant scalings as the Ansätze suggest. The later will be a geometric rigidity Korn-Poincaré type estimate. This passage is major progress in the thin domain rigidity problem. 3. For the borderline energy scaling (bending-to-stretching), the estimate implies improved strong compactness on the vector fields for free. Finally, this being said, our new interpolation inequality reduces the problem of proving “any” geometric one well rigidity problem in thin domains to estimating the vector field itself instead of the gradient, thus reducing the complexity of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Or for shells that have a flat part.

  2. However there are tools to deduce strong convergence of the gradients.

References

  1. Conti, S., Schweizer, B.: Rigidity and gamma convergence for solid–solid phase transitions with \(SO(2)\) invariance. Commun. Pure Appl. Math. 59(6), 830–868 (2006)

    Article  MathSciNet  Google Scholar 

  2. Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441–471 (1947)

    Article  MathSciNet  Google Scholar 

  3. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MathSciNet  Google Scholar 

  4. Friesecke, G., James, R.D., Mora, M.G., Müller, S.: Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence. C. R. Acad. Sci. Paris, Ser. I 336, 697–702 (2003)

    Article  MathSciNet  Google Scholar 

  5. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  Google Scholar 

  6. Grabovsky, Y., Harutyunyan, D.: Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells. SIAM J. Math. Anal. 46(5), 3277–3295 (2014)

    Article  MathSciNet  Google Scholar 

  7. Grabovsky, Y., Harutyunyan, D.: Rigurous derivation of the formula for the buckling load in axially compressed circular cylindrical shells. J. Elast. 120(2), 249–276 (2015)

    Article  Google Scholar 

  8. Grabovsky, Y., Harutyunyan, D.: Scaling instability of the buckling load in axially compressed circular cylindrical shells. J. Nonlinear Sci. 26(1), 83–119 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Grabovsky, Y., Harutyunyan, D.: Korn inequalities for shells with zero Gaussian curvature. Ann. Inst. Henri Poincaré C, Nonlinear Anal. 35(1), 267–282 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Harutyunyan, D.: New asymptotically sharp Korn and Korn-like inequalities in thin domains. J. Elast. 117(1), 95–109 (2014)

    Article  MathSciNet  Google Scholar 

  11. Harutyunyan, D.: Gaussian curvature as an identifier of shell rigidity. Arch. Ration. Mech. Anal. 226(2), 743–766 (2017)

    Article  MathSciNet  Google Scholar 

  12. Harutyunyan, D.: On the Korn interpolation and second inequalities in thin domains. SIAM J. Math. Anal. 50(5), 4964–4982 (2018)

    Article  MathSciNet  Google Scholar 

  13. Harutyunyan, D.: The Korn interpolation and second inequalities for shells. C. R. Math. 356(5), 575–580 (2018)

    Article  MathSciNet  Google Scholar 

  14. Harutyunyan, D.: The sharp \(L^{p}\) Korn interpolation and second inequalities in thin domains. Preprint. arXiv:1809.04439

  15. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491–511 (1995)

    Article  MathSciNet  Google Scholar 

  16. Hornung, P., Lewicka, M., Pakzad, R.: Infinitesimal isometries on developable surfaces and asymptotic theories for thin developable shells. J. Elast. 111, 1 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kohn, R.V.: New integral estimates for deformations in terms of their nonlinear strain. Arch. Ration. Mech. Anal. 78, 131–172 (1982)

    Article  MathSciNet  Google Scholar 

  18. Kohn, R.V., Vogelius, M.: A new model for thin plates with rapidly varying thickness. II: a convergence proof. Q. Appl. Math. 43, 1–22 (1985)

    Article  MathSciNet  Google Scholar 

  19. Kondratiev, V.A., Oleinik, O.A.: Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Usp. Mat. Nauk 43(5), 55–98 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Kondratiev, V., Oleinik, O.: On Korn’s inequalities. C. R. Acad. Sci. Paris 308, 483–487 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Korn, A.: Solution générale du problème d’équilibres dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse 2(10), 165–269 (1908)

    Article  Google Scholar 

  22. Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat., 705–724 (1909)

  23. Lewicka, M., Mora, M.G., Pakzad, R.: Shell theories arising as low energy \(\Gamma \)-limit of \(3D\) nonlinear elasticity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) IX, 1–43 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Müller, S.: Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities. In: Vector-Valued Partial Differential Equations and Applications. Lecture Notes in Math., vol. 2179, pp. 125–193. Springer, Cham (2017)

    Chapter  Google Scholar 

  25. Tovstik, P.E., Smirnov, A.L.: Series on Stability, Vibration and Control of Systems. Asymptotic Methods in the Buckling Theory of Elastic Shells, vol. 4. World Scientific, Singapore (2001)

    Google Scholar 

  26. Yao, P.: Optimal exponentials of thickness in Korn’s inequalities for parabolic and elliptic shells. Preprint. arXiv:1807.11114

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants No. DMS-1814361.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, D. The Asymptotically Sharp Geometric Rigidity Interpolation Estimate in Thin Bi-Lipschitz Domains. J Elast 141, 291–300 (2020). https://doi.org/10.1007/s10659-020-09783-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09783-8

Keywords

Mathematics Subject Classification

Navigation