Skip to main content
Log in

Impaction of thin films from polar solvent Si/SiOx nanoparticle inks

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Impaction techniques have so far been efficiently used for formation of films from nanoparticles when coupled to synthetic process. However, this approach limits the choice of shapes and compositions of particles, so techniques of impaction of ready-made particles are desirable. To this end, the use of nanoparticle inks as a source of solid material is first described in this paper. The films are cast from dispersions of polar solvent-susceptible Si/SiOx nanoparticles. Water, ethanol, and acetonitrile are studied for solvents, and the latter two are shown to be suitable, as they possess lower surface tension and lower boiling points. Microscopically uniform films of nanoparticles are formed when aerosol and substrate are heated, with density of films approaching 40% of that of the bulk material. Higher stagnation pressure is beneficial for deposition, while further heating of the aerosol beyond the solvent evaporation can cause oligomerization of the solvent. Deposition of dense films in subsonic part of the jet appears possible with the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Qian, L, Zheng, Y, Xue, J, Holloway, PH, “Stable and Efficient Quantum-Dot Light-Emitting Diodes Based on Solution-Processed Multilayer Structures.” Nat. Photonics, 5 543–548 (2011)

    Article  CAS  Google Scholar 

  2. Xu, X, Zhao, Y, Xue, X, Huo, S, Chen, F, Zou, G, Liang, X-J, “Seedless Synthesis of High Aspect Ratio Gold Nanorods with High Yield.” J. Mater. Chem. A, 2 3528–3535 (2014)

    Article  CAS  Google Scholar 

  3. Kelly, KL, Coronado, E, Zhao, LL, Schatz, GC, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment.” J. Phys. Chem. B, 107 668–677 (2003)

    Article  CAS  Google Scholar 

  4. Faucheaux, JA, Stanton, ALD, Jain, PK, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities.” J. Phys. Chem. Lett., 5 976–985 (2014)

    Article  CAS  Google Scholar 

  5. Gorbachev, EA, Trusov, LA, Sleptsova, AE, Kozlyakova, ES, Alyabyeva, LN, Yegiyan, SR, Prokhorov, AS, Lebedev, VA, Roslyakov, IV, Vasiliev, AV, Kazin PE, “Hexaferrite Materials Displaying Ultra-high Coercitivity and Sub-terahertz Ferromagnetic Resonance Frequencies.” Mater. Today, 32 13–18 (2020)

  6. Pankhurst, QA, “Applications of Magnetic Nanoparticles in Biomedicine.” J. Phys. D: Appl. Phys., 36 R167–R181 (2003)

    Article  CAS  Google Scholar 

  7. Talapin, DV, Murray, CB, “PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors.” Science, 310 86–89 (2005)

    Article  CAS  Google Scholar 

  8. Anthony, RJ, Cheng, K-Y, Holman, ZC, Holmes, RJ, Kortshagen, UR, “An All-Gas-Phase Approach for the Fabrication of Silicon Nanocrystal Light-Emitting Devices.” Nano Lett., 12 2822–2825 (2012)

    Article  CAS  Google Scholar 

  9. Okimoto, H, Takenobu, T, Yanagi, K, Miyata, Y, Shimotani, H, Kataura, H, Iwasa, Y, “Tunable Carbon Nanotube Thin-Film Transistors Produced Exclusively via Inkjet Printing.” Adv. Mater., 22 3981–3986 (2010)

    Article  CAS  Google Scholar 

  10. Nava, G, Fumagalli, F, Gambino, S, Farella, I, Dell’Erba, G, Beretta, D, Divitini, G, Ducati, C, Caironi, M, Cola, A, Di Fonzo, F, “Towards an Electronic Grade Nanoparticle-Assembled Silicon Thin Film by Ballistic Deposition at Room Temperature: The Deposition Method, and Structural and Electronic Properties.” J. Mater. Chem. C, 5 3725–3735 (2017)

    Article  CAS  Google Scholar 

  11. Nava, G, Fumagalli, F, Neutzner, S, Di Fonzo, F, “Large Area Porous 1D Photonic Crystals Comprising Silicon Hierarchical Nanostructures Grown by Plasma-assisted, Nanoparticle Jet Deposition.” Nanotechnology, 29 465603 (2018)

  12. Hill, S, Connell, R, Peterson, C, Hollinger, J, Hillmyer, MA, Kortshagen, UR, Ferry, VE, “Silicon Quantum Dot—Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators.” ACS Photonics, 6 (1) 170–180 (2019)

    Article  CAS  Google Scholar 

  13. Jang, J, Dolzhnikov, DS, Liu, W, Nam, S, Shim, M, Talapin, DV, “Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular “Solders”: Approaching Single Crystal Mobility.” Nano Lett., 15 6309–6317 (2015)

    Article  CAS  Google Scholar 

  14. van Embden, J, Chesman, ASR, Della Gaspera, E, Duffy, NW, Watkins, SE, Jasieniak, JJ, “Cu2ZnSnS4xSe4(1−x) Solar Cells from Polar Nanocrystal Inks.” J. Am. Chem. Soc., 136 5237–5240 (2014)

    Article  Google Scholar 

  15. Lechner, R, Wiggers, H, Ebbers, A, Steiger, J, Brandt, MS, Stutzmann, M, “Thermoelectric Effect in Laser Annealed Printed Nanocrystalline Silicon Layers.” Phys. Status Solidi (RRL), 1 (6) 262–264 (2007)

    Article  CAS  Google Scholar 

  16. Holman, ZC, Kortshagen, UR, “A Flexible Method for Depositing Dense Nanocrystal Thin Films: Impaction of Germanium Nanocrystals.” Nanotechnology, 21 335302 (2010)

  17. Zhou, S, Ni, Z, Ding, Y, Sugaya, M, Pi, X, Nozaki, T, “Ligand-Free, Colloidal, and Plasmonic Silicon Nanocrystals Heavily Doped with Boron.” ACS Photonics, 3 (3) 415–422 (2016)

    Article  CAS  Google Scholar 

  18. Fan, S-Q, Yang, G-J, Li, C-J, Liu, G-J, Li, C-X, Zhang, L-Z, “Characterization of Microstructure of Nano-TiO2 Coating Deposited by Vacuum Cold Spraying.” J. Therm. Spray Technol., 15 (4) 513–517 (2006)

    Article  CAS  Google Scholar 

  19. Akedo, J, “Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices.” J. Therm. Spray Technol., 17 (2) 181–198 (2008)

    Article  CAS  Google Scholar 

  20. Holman, ZC, Kortshagen, UR, “Quantum Confinement in Germanium Nanocrystal Thin Films.” Phys. Status Solidi (RRL), 5 (3) 110–112 (2011)

    Article  CAS  Google Scholar 

  21. Firth, P, Holman, ZC, “Aerosol Impaction-Driven Assembly System for the Production of Uniform Nanoparticle Thin Films with Independently Tunable Thickness and Porosity.” ACS Appl. Nano Mater., 1 4351–4357 (2018)

    Article  CAS  Google Scholar 

  22. Nichols, WT, Malyavanatham, G, Henneke, DE, Brock, JR, Becker, MF, Keto, JW, Glicksman, HD, “Gas and Pressure Dependence for the Mean Size of Nanoparticles Produced by Laser Ablation of Flowing Aerosols.” J. Nanoparticle Res., 2 141–145 (2000)

    Article  CAS  Google Scholar 

  23. Tang, J, Gomez, A, “Controlled Mesoporous Film Formation from the Deposition of Electrosprayed Nanoparticles.” Aerosol Sci. Technol., 51 (6) 755–765 (2017)

    Article  CAS  Google Scholar 

  24. Kononov, NN, Davydova, DV, Bubenov, SS, Dorofeev, SG, “Electrical and Optical Characteristics of Si-Nanoparticle Films Deposited onto Substrates by High-Voltage Electrospraying from Ethanol Sols.” Semiconductors, 53 (4) 552–565 (2019)

    Article  CAS  Google Scholar 

  25. Kononov, NN, Kuz’min, GP, Orlov, AN, Surkov, AA, Tikhonevich, OV, “Optical and Electrical Properties of Thin Wafers Obtained from Nanocrystalline Si Powders.” Semiconductors, 39 (7) 868–873 (2005)

    Article  Google Scholar 

  26. Myshlyaeva, LV, Krasnoschokov, VV, Analytical Chemistry of Silicon. Nauka, Moscow (1972)

    Google Scholar 

  27. Blokhin, MA, Shweitzer, IG, Rentgenospectral Handbook. Nauka, Moscow (1982)

    Google Scholar 

  28. Crist, S, Sherman, PM, Glass, DR, “Study of the Highly Underexpanded Sonic Jet.” AIAA J., 4 (1) 68–71 (1966)

    Article  Google Scholar 

  29. Dean, JA, Lange’s Handbook of Chemistry, 15th ed. McGraw-Hill, New York (1999)

    Google Scholar 

  30. Oikawa, E, Kambara, S, “Physical Properties and Structure of Polyacetonitrile.” Bull. Chem. Soc. Jpn., 37 (12) 1849–1854 (1964)

    Article  CAS  Google Scholar 

  31. Zhou, S, Pi, X, Ni, Z, Ding, Y, Jiang, Y, Jin, C, Delerue, C, Yang, D, Nozaki, T, “Comparative Study on the Localized Surface Plasmon Resonance of Boron- and Phosphorus-Doped Silicon Nanocrystals.” ACS Nano, 9 (1) 378–386 (2015)

    Article  CAS  Google Scholar 

  32. Tarasevich, BN, IR Spectra of Main Classes of Organic Compounds. Moscow State University, Moscow (2012)

    Google Scholar 

  33. Visscher, WM, Bolsterli, M, “Random Packing of Equal and Unequal Spheres in Two and Three Dimensions.” Nature, 239 504–507 (1972)

    Article  Google Scholar 

  34. Jen, T-C, Li, L, Chen, Q, Cui, W, Zhang, X, “The Acceleration of Micro- and Nano-particles in Supersonic de-Laval-Type Nozzle.” Proc. International Mechanical Engineering Congress, Washington, D.C., November 2003

  35. Sugimoto, H, Fujii, M, Imakita, K, Hayashi, S, Akamatsu, K, “All-Inorganic Near-Infrared Luminescent Colloidal Silicon Nanocrystals: High Dispersibility in Polar Liquid by Phosphorus and Boron Codoping.” J. Phys. Chem. C, 116 17969–17974 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Russian Foundation for Basic Research Grant No. 17-03-01269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Dorofeev.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubenov, S.S., Dorofeev, S.G., Popelensky, V.M. et al. Impaction of thin films from polar solvent Si/SiOx nanoparticle inks. J Coat Technol Res 17, 1489–1495 (2020). https://doi.org/10.1007/s11998-020-00368-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00368-7

Keywords

Navigation