Skip to main content
Log in

External succinate and potassium ions influence Dcu dependent FOF1-ATPase activity and H+ flux of Escherichia coli at different pHs

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

During fermentation Escherichia coli transport succinate mainly via Dcu family carriers. Current paper describes the role of externally added succinate on N’N’-dicyclohexylcarbodiimide (DCCD) sensitive ATPase activity and H+ flux depending on potassium ions. At pH 7.5 in wild type membrane vesicles DCCD-sensitive ATPase activity was the same as in dcuACBD quadruple mutant. In dcuACB it was increased ~ 3.3 fold while in dcuD DCCD-sensitive ATPase activity was absent. The DCCD-sensitive H+ efflux was fully dependent on FOF1 only in dcuACB mutant. This activity depended on potassium ions and only in dcuACBD mutant DCCD-sensitive ATPase activity was stimulated ~ 3 fold. At pH 5.5 DCCD-sensitive ATPase activities were determined in dcuACB or dcuD mutants but not in wild type. Interestingly, addition of potassium ions enhanced DCCD-sensitive ATPase activity in dcuD mutant ~ 3-fold compared to wild type. In dcuD mutant ~ 3-fold higher H+ uptake was registered, compared to wild type. Taken together it can be concluded that at pH 7.5 the FOF1-activity depends on DcuACB. Moreover, DcuACB but not DcuD are working towards H+ uptake direction. DcuD contributes to H+ efflux at pH 7.5 while at pH 5.5 it affects H+ influx when external succinate is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler LW, Rosen BP (1977) Functional mosaicism of membrane proteins in vesicles of Escherichia coli. J Bacteriol 129:959–966

    PubMed  PubMed Central  CAS  Google Scholar 

  • Akopyan K, Trchounian A (2006) Escherichia coli membrane proton conductance and proton fluxes depends on growth pH and are sensitive to osmotic shock. Cell Biochem Biophys 46:201–206

    PubMed  CAS  Google Scholar 

  • Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19

    PubMed  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol 2

  • Bagramyan K, Mnatsakanyan N, Poladian A, Vassilian A, Trchounia A (2002) The roles of hydrogenases 3 and 4, and the FOF1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178

    PubMed  CAS  Google Scholar 

  • Bagramyan K, Mnatsakanyan N, Trchounian A (2003) Formate increases the FOF1-ATPase activity in Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH. Biochem Biophys Res Comm 306:361–365

    PubMed  CAS  Google Scholar 

  • Blbulyan S, Trchounian A (2015) Impact of membrane-associated hydrogenases on the FOF1-ATPase in Escherichia coli during glycerol and mixed carbon fermentation: ATPase activity and its inhibition by N,N′-dicyclohexylcarbodiimide in the mutants lacking hydrogenases. Arch Biochem Biophys 579:67–72

    PubMed  CAS  Google Scholar 

  • Boyer PD (1997) The ATP synthase—a splendid molecular machine. Ann Rev Biochem 66(1):717–749

    PubMed  CAS  Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5:223–234

    PubMed  CAS  Google Scholar 

  • Deckers-Hebestreit G, Greie JC, Stalz WD, Altendorf K (2000) The ATP synthase of Escherichia coli: structure and function of F0 subunits. BBA-Bioenerg 1458:364–373

    CAS  Google Scholar 

  • Fillingame RH, Steed PR (2014) Half channels mediating H+ transport and the mechanism of gating in the FO sector of Escherichia coli F1FO ATP synthase. BBA Bioenerg 1837:1063–1068

    CAS  Google Scholar 

  • Futai M (2006) Our research on proton pumping ATPases over three decades: their biochemistry, molecular biology and cell biology. Proc Jpn Acad Ser B 82:416–438

    CAS  Google Scholar 

  • Gevorgyan H, Trchounian A, Trchounian K (2020) Formate and potassium ions affect Escherichia coli proton ATPase activity at low pH during mixed carbon fermentation. IUBMB Life 72:915–921

    PubMed  CAS  Google Scholar 

  • Gonzalez JE, Long CP, Antoniewicz MR (2017) Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metabol Eng 39:9–18

    Article  CAS  Google Scholar 

  • Hong S, Pedersen PL (2008) ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 72:590–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janausch IG, Unden G (1999) The dcuD (former yhcL) gene product of Escherichia coli as a member of the DcuC family of C4-dicarboxylate carriers: lack of evident expression. Arch Microbiol 172:219–226

    Article  PubMed  CAS  Google Scholar 

  • Janausch IG, Zientz E, Tran QH, Kröger A, Unden G (2002) C4-dicarboxylate carriers and sensors in bacteria. BBA Bioenerg 1553:39–56

    Article  CAS  Google Scholar 

  • Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary FOF1-ATPase. Nature 459:364

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan L, Valle A, Bolivar J, Trchounian A. Trchounian K (2019) Evidence for Escherichia coli DcuD carrier dependent FOF1-ATPase activity during fermentation of glycerol. Sci Rep 9:1–7

    Article  CAS  Google Scholar 

  • Karapetyan L, Pinske C, Sawers G, Trchounian A, Trchounian K (2020) Influence of C4-Dcu transporters on hydrogenase and formate dehydrogenase activities in stationary phase‐grown fermenting Escherichia coli. IUBMB Life Epub 11 Apr; https://doi.org/10.1002/iub.2290

  • Konings WN, Kaback HR (1973) Anaerobic transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci USA 70:3376–3381

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mnatsakanyan N, Bagramyan K, Vassilian A, Nakamoto RK, Trchounian A (2002) FO Cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Biosci Rep 22:421–430

    PubMed  CAS  Google Scholar 

  • Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M (2010) The mechanism of rotating proton pumping ATPases. BBA Bioenerg 1797:1343–1352

    CAS  Google Scholar 

  • Otto RO, Lageveen RG, Veldkamp HA, Konings WN (1982) Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris. J Bacteriol 149:733–738

    PubMed  PubMed Central  CAS  Google Scholar 

  • Riondet C, Cachon R, Waché Y, Alcaraz G, Diviès C (1999) Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. Eur J Biochem 262:595–599

    PubMed  CAS  Google Scholar 

  • Riondet C, Cachon R, Waché Y, Alcaraz G, Diviès C (2000) Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol 182:620–626

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sá-Pessoa J, Paiva S, Ribas D, Silva IJ, Viegas SC, Arraiano CM, Casal M (2013) SATP (YaaH), a succinate–acetate transporter protein in Escherichia coli. Biochem J 454:585–595

    PubMed  Google Scholar 

  • Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG (2016) Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. Elife 5:e21598

    PubMed  PubMed Central  Google Scholar 

  • Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Christie M, Stocker R, Duncan TM, Stewart AG (2019) Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. Elife 8:e43864

    PubMed  PubMed Central  Google Scholar 

  • Trchounian A (2004) Escherichia coli proton-translocating FOF1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation–reduction under fermentation. Biochem Biophys Res Comm 315:1051–1057

    PubMed  CAS  Google Scholar 

  • Trchounian A, Sawers RG (2014) Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force? IUBMB Life 66:1–7

    PubMed  CAS  Google Scholar 

  • Trchounian A, Trchounian K (2019) Fermentation revisited: how do microorganisms survive under energy-limited conditions? Trends Biochem Sci 44:391–400

    PubMed  CAS  Google Scholar 

  • Trchounian K, Poladyan A, Trchounian A (2009) Relation of potassium uptake to proton transport and activity of hydrogenases in Escherichia coli grown at low pH. Biochemistry 3:144–150

    Google Scholar 

  • Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the FOF1-ATPase. Crit Rev Biochem Mol Biol 47:236–249

    PubMed  CAS  Google Scholar 

  • Trchounian K, Blbulyan S, Trchounian A (2013) Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation. J Bioenerg Biomembr 45:253–260

    PubMed  CAS  Google Scholar 

  • Valle A, Cabrera G, Muhamadali H, Trivedi DK, Ratray NJ, Goodacre R, Cantero D, Bolivar J (2015) A systematic analysis of TCA Escherichia coli mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source. Biotech J 10:1750–1761

    Article  CAS  Google Scholar 

  • Vik SB, Ishmukhametov RR (2005) Structure and function of subunit a of the ATP synthase of Escherichia coli. J Bioenerg Biomembr 37:445–459

    Article  PubMed  CAS  Google Scholar 

  • Weber J, Senior AE (2003) ATP synthesis driven by proton transport in F1F0-ATP synthase. FEBS Lett 545:61–70

    Article  PubMed  CAS  Google Scholar 

  • Zakharyan E, Trchounian A (2001) K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux. FEMS Microbiol Lett 204:61–64

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Grant from State Committee of Science, Ministry of Education, Science, Culture and Sport of Armenia, to AT (18T-1F045) and KT (19YR-1F013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Trchounian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikoyan, G., Karapetyan, L., Vassilian, A. et al. External succinate and potassium ions influence Dcu dependent FOF1-ATPase activity and H+ flux of Escherichia coli at different pHs. J Bioenerg Biomembr 52, 377–382 (2020). https://doi.org/10.1007/s10863-020-09847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-020-09847-3

Keywords

Navigation