Skip to main content

Advertisement

Log in

Foraminiferal δ18O reveals gas hydrate dissociation in Arctic and North Atlantic ocean sediments

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Paleoceanographic investigations in the Arctic and north Atlantic are crucial to understanding past and current climate change, in particular considering amounts of pressure-temperature sensitive gas stored in marine sediments of the region. Many paleoceanographic studies are based on foraminiferal oxygen and carbon stable isotope compositions (δ18O, δ13C) from either planktonic specimens, benthic specimens or both. However, in seafloor regions promixal to high upward methane fluxes, such as where seafloor gas emission and shallow gas hydrate-bearing sediment occur, foraminiferal δ18O and δ13C display a wide range of values. Our study focuses on foraminiferal stable isotope signatures in shallow sediment at core sites in the Arctic and North Atlantic affected by significant upward flow of methane. This includes cores with shallow sulfate methane transitions that are adjacent to seeps and containing gas hydrate. We place emphasis on potential effects due to gas hydrate dissociation and diagenesis. Gas hydrate dissociation is known to increase pore-water δ18O, but our results indicate that precipitation of methane-derived authigenic carbonate (MDAC) also affects the foraminiferal δ18O of both planktonic and benthic species. In addition to this post-depositional overprint, we investigate the potential bias of the stable isotope record due to ontogenetic effects. Our data show that the size fraction does not impact the isotopic signal of planktonic and benthic foraminifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aloisi G, Pierre C, Rouchy J-M, Foucher J-P, Woodside J, the MEDINAUT Scientific Party (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth Planet Sci Lett 184:321–338. https://doi.org/10.1016/S0012-821X(00)00322-8

    Article  Google Scholar 

  • Anderson, B., Boswell, R., Collett, T.S., Farrell, H., Ohtsuki, S., White, M., Zyrianova, M., 2014. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial. In: Proceedings of the international conference on gas hydrates, Beijing

  • Barbieri R, Panieri G (2004) How are benthic foraminiferal faunas influenced by cold seeps? Evidence from the Miocene of Italy. Palaeogeogr Palaeoclimatol Palaeoecol 204:257–275

    Google Scholar 

  • Barras C, Duplessy J-C, Geslin E, Michel E, Jorissen FJ (2010) Calibration of δ18O of cultured benthic foraminiferal calcite as a function of temperature. Biogeosciences 7:1349–1356

    Google Scholar 

  • Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13(2):150–160

    Google Scholar 

  • Bernhard JM, Panieri G (2018) Keystone Arctic paleoceanographic proxy association with putative methanotrophic bacteria. Sci Rep 8:10610

    Google Scholar 

  • Bernhard, J.M., Martin, J.B., Rathburn, A., 2010. Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps. Paleoceanography 25, PA4206, doi:https://doi.org/10.1029/2010PA001930

  • Bhatnagar G, Chapman WG, Dickens GR, Dugan B, Hirasaki GJ (2008) Sulfate-methane transition as a proxy for average methane hydrate saturation in marine sediments. Geophys Res Lett 35:L03611. https://doi.org/10.1029/2007GL032500

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Bohrmann G, Greinert J, Suess E, Torres M (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650. https://doi.org/10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2

    Article  Google Scholar 

  • Bohrmann, G, Ahrlich, F, Bergenthal, M, Bünz, S, Düßmann, R, Ferreira, Ch, Freudenthal, T, Fröhlich, S, Hamann, K, Hong, W.-L, Hsu, Ch.-W, Johnson, J, Kaszemeik, K, Kausche, A, Klein, T, Lange, M, Lepland, A, Malnati, J, Meckel, S, Meyer-Schack, B, Noorlander, K, Panieri, G, Pape, T, Reuter, M, Riedel, M, Rosiak, U, Schmidt, Ch, Schmidt, W, Seiter, Ch, Spagnoli, G, Stachowski, A, Stange, N, Wallmann, K, Wintersteller, P, Wunsch, D, Yao (2016) H.R/V MARIA S. Merian Cruise Report MSM57: http://nbn-resolving.de/urn:nbn:de:gbv:46-00105895-15

  • Borowski WS, Paull CK, Ussler W (1996) Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24:655–658

    Google Scholar 

  • Borowski WS, Paull CK, Ussler W (1997) Carbon cycling within the upper methanogenic zone of continental rise sediments: an example from the methane-rich sediments overlying the Blake ridge gas hydrate deposits. Mar Chem 57:299–311

    Google Scholar 

  • Borrelli C, Panieri G, Dahl TM, Neufeld K (2018) Novel biomineralization strategy in calcareous foraminifera. Sci Rep 8:10201

    Google Scholar 

  • Bünz S, Polyanov S, Vadakkepuliyambatta S, Consolaro C, Mienert J (2012) Active gas venting through hydrate-bearing sediments on the Vestnesa ridge, offshore W Svalbard. Mar Geol 332–334:189–197. https://doi.org/10.1016/j.margeo.2012.09.012

    Article  Google Scholar 

  • Burkett AM, Rathburn A, Elena Pérez M, Martin JB (2018) Influences of thermal and fluid characteristics of methane and hydrothermal seeps on the stable oxygen isotopes of living benthic foraminifera. Mar Pet Geol 93:344–355

    Google Scholar 

  • Burton EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105:163–179

    Google Scholar 

  • Chatterjee S, Dickens GR, Bhatnagar G, Chapman WG, Dugan B, Snyder GT, Hirasaki GJ (2011) Pore water sulfate, alkalinity, and carbon isotope profilesin shallow sediment above marine gas hydrate systems:a numerical modeling perspective. J Geophys Res 116:B09103. https://doi.org/10.1029/2011JB008290

    Article  Google Scholar 

  • Consolaro C, Rasmussen TL, Panieri G, Mienert J, Bünz S, Sztybor K (2015) Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the Deepwater gateway to the Arctic. Clim Past 11:669–685. https://doi.org/10.5194/cp-11-669-2015

    Article  Google Scholar 

  • Consolaro C, Rasmussen TL, Panieri G (2018) Palaeoceanographic and environmental changes in the eastern Fram Strait during the last 14,000 years based on benthic and planktonic foraminifera. Mar Micropaleontol 139:84–101. https://doi.org/10.1016/j.marmicro.2017.11.001

    Article  Google Scholar 

  • Conti S, Fontana D, Gubertini A, Sighinolfi G, Tateo F, Fioroni C, Fregni P (2004) A multidisciplinary study of middle Miocene seep-carbonates from the northern Apennine foredeep (Italy). Sediment Geol 169:1–19

    Google Scholar 

  • Corell RW, Hassol SJ, Melillo J (2008) Emerging challenges – methane from the Arctic: global warming wildcard, UNEP year book 2008: an overview of our changing environment. United Nations Environment Programme, Stevenage, Hertfordshire

    Google Scholar 

  • Corliss BH (1991) Morphology and microhabitat preference of benthic foraminifera from the Northwest Atlantic Ocean, mar. Micropaleontology 17(3–4):195–236. https://doi.org/10.1016/0377-8398(91)90014-W

    Article  Google Scholar 

  • Corliss BH, McCorkle BC, Higdon DM (2002) A time series study of the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 17:1–27. https://doi.org/10.1029/2001PA000664

    Article  Google Scholar 

  • Cortijo E, Labeyrie L, Vidal L, Vautravers M, Chapman M, Duplessy J-C, Elliot M, Arnold M, Turon J-L, Auffret G (1997) Changes in sea surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40° and 60°N. Earth Planet Sci Lett 146:29–45

    Google Scholar 

  • Crémière A, Pierre C, Blanc-Valleron M-M, Zitter T, Namik Çağatay M, Henry P (2012) Methane-derived authigenic carbonates along the North Anatolian fault system in the sea of Marmara (Turkey). Deep-Sea Res I Oceanogr Res Pap 66:114–130

    Google Scholar 

  • Crémière A, Lepland A, Chang S, Sahy D, Condon DJ, Noble SR, Martma T, Thorsnes T, Sauer S, Brunstad H (2016) Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian ice sheet. Nat Commun 7:11509

  • Damm E, Mackensen A, Budeus G, Faber E, Hanfland C (2005) Pathways of methane in seawater: plume spreading in an Arctic shelf environment (SW-Spitsbergen). Cont Shelf Res 25:1453–1472

    Google Scholar 

  • Davidson DW, Leaist DG, Hesse R (1983) Oxygen-18 enrichment in the water of a clathrate hydrate. Geochim Cosmochim Acta 47:2293–2295

    Google Scholar 

  • Dejonghe L, Boulvain F (1993) Paleogeographic and diagenetic context of a baritic mineralization enclosed within Frasnian peri-reefal formations: Case history of the Chaudfontaine mineralization (Belgium). Ore Geol Rev 7:413–431

    Google Scholar 

  • Dickens GR, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleogene. Paleoceanography 10(6):965–971. https://doi.org/10.1029/95PA02087

    Article  Google Scholar 

  • Duplessy J-C, Lalou C, Claude Vinnot A (1970a) Differential isotopic fractionation in benthic foraminifera and Paleotemperatures reassessed. Science 10:250–251

    Google Scholar 

  • Duplessy J-C, Lalou C, Vinot AC (1970b) Differential isotopic fractionation in benthic foraminifera and paleotemperatures reassessed. Science 168:250–251

    Google Scholar 

  • Eichhubl P, Boles JR (1998) Vein formation in relation to burial diagenesis in the Miocene Monterey formation, arroyo Burro Beach, Santa Barbara, California. In: Eichhubl P (ed) Diagenesis, deformation, and fluid flow in the Miocene Monterey formation of coastal California, vol 83. SEPM Pacific Section Special Publication, pp 15–36

  • Eichhubl P, Greene HG, Naehr T, Maher M (2000) Structural control of fluid flow: offshore fluid seepage in the Santa Barbara Basin, California. Journal of Geophysical Exploration 69-70:545–549. https://doi.org/10.1016/S0375-6742(00)00107-2

    Article  Google Scholar 

  • Elderfield H, Vautravers M, Cooper M (2002) The relationship between shell size and mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera. Geochenistry, Geophiscs, Geosystems 3:1–13

    Google Scholar 

  • Fontanier C, Mackensen A, Jorissen FJ, Anschutz P, Licari L, Griveaud C (2006) Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: microhabitat impact and seasonal variability. Mar Micropaleontol 158:159–183. https://doi.org/10.1016/j.marmicro.2005.09.004

    Article  Google Scholar 

  • Friedrich O, Schmiedl G, Erlenkeuser H (2006) Stable isotope composition of late cretaceous benthic foraminifera from the southern South Atlantic: biological and environmental effects. Mar Micropaleontol 58:135–157

    Google Scholar 

  • Fritz, Smith (1970) The isotopic composition of secondary dolomites. Geochim Cosmochim Acta 34:1101–1173

    Google Scholar 

  • Gieskes J, Mahn C, Day S, Martin JB, Greinert J, Rathburn T, McAdoo B (2005) A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak trench, hydrate ridge, Monterey Bay, and Eel River basin. Chem Geol 220:329–345. https://doi.org/10.1016/j.chemgeo.2005.04.002

    Article  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at hydrate ridge: classification, distribution, and origin of Authigenic Lithologies. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection, vol 124. Geophysical monograph series, pp 99–113

  • Greinert J, Bialas J, Lewis K, Suess E (2010) Methane seeps at the Hikurangi margin, New Zealand. Mar Geol 272:1–3

    Google Scholar 

  • Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2014) Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32:201–204

    Google Scholar 

  • Herguera JC, Paull CK, Perez E, Ussler W, Peltzer E (2014) Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments. Paleoceanography 29:273–289

    Google Scholar 

  • Hill TM, Kennett JP, Spero HJ (2003) Foraminifera as indicators of methane-rich environments: a study of modern methane seeps in Santa Barbara Channel, California. Mar Micropaleontol 49:23–138

    Google Scholar 

  • Hong W-L, Torres ME, Kim J-H, Choi J, Bahk J-J (2013) Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin. Biogeochemistry 115:1–20. https://doi.org/10.1007/s10533-012-9824-y

    Article  Google Scholar 

  • Hong W-L, Torres ME, Carroll J, Cremiere A, Panieri G, Yao H, Serov P (2017) Seepage from an Arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming. Nat Commun 8:1–14. https://doi.org/10.1038/ncomms15745

    Article  Google Scholar 

  • Hong W-L, Torres ME, Portnov A, Waage M, Haley B, Lepland A (2018) Variations in gas and water pulses at an Arctic seep: fluid sources and methane transport. Geophys Res Lett 45. https://doi.org/10.1029/2018GL077309

  • Hong W-L, Lepland A, Himmler T, Kim J-H, Chand S, Sahy D, Solomon E, Rae J, Tonu M, Nam S-I, Knies J (2019) Discharge of meteoric water in the eastern Norwegian Sea since the last glacial period. Geophys Res Lett 46. https://doi.org/10.1029/2019GL084237

  • Hustoft S, Bünz S, Mienert J, Chand S (2009) Gas hydrate reservoir and active methane-venting province in sediments on < 20 ma young oceanic crust in the Fram Strait, offshore NW-Svalbard. Earth Planet Sci Lett 284:12–24. https://doi.org/10.1016/j.epsl.2009.03.038

    Article  Google Scholar 

  • Ijiri A, Inagaki F, Kubo Y, Adhikari RR, SHattori S, Hoshino T, Imachi H, Kawagucci S, Morono Y, Ohtomo Y, Ono S, Sakai S, Takai K, Toki T, Wang DT, Yoshinaga MY, Arnold GL, Ashi J, Case DH, Feseker T, Hinrichs K-U, Ikegawa Y, Ikehara M, Kallmeyer J, Kumagai H, Lever MA, Morita S, Nakamura K-I, Nakamura Y, Nishizawa M, Orphan VJ, Røy H, Schmidt F, Tani A, Tanikawa W, Terada T, Tomaru H, Tsuji T, Tsunogai U, Yamaguchi YT, Yoshida N (2018) Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. Sci Adv 4(6):1–15. https://doi.org/10.1126/sciadv.aao4631

    Article  Google Scholar 

  • Jakobsson M, Spielhagen RF, Thiede J, Andreasen C, Hall B, Ingólfsson Ó, Kjær KH, Van Kolfschoten T, Krinner G, Long A, Lunkka J-P, Subetto D, Svendsen JI (2008) Foreword to the special issue: Arctic paleoclimate and its extremes (APEX). Polar Res 27(2):97–104. https://doi.org/10.1111/j.1751-8369.2008.00063.x

    Article  Google Scholar 

  • James RH, Bousquet P, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Pizkozub J, Rehder G, Treude T, Vielsdädte L, Greinert J (2016) Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review. Limnol Oceanogr 61:283–299. https://doi.org/10.1002/lno.10307

    Article  Google Scholar 

  • Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2000) Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science 288:128–133

    Google Scholar 

  • Kim S-T, O’Neil JR, Hillaire-Marcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochim Cosmochim Acta 71:4704–4715

    Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere. Chem Geol 71:41–51. https://doi.org/10.1016/0009-2541(88)90104-0

    Article  Google Scholar 

  • Lea DW, Boyle EA (1993) Determination of carbonate-bound barium in foraminifera and corals by isotope dilution plasma-mass spectrometry. Chem Geol 103:73–84

    Google Scholar 

  • Loyd SJ, Sample J, Tripati RE, Defliese WF, Brooks K, Hovland M, Torres M, Marlow J, Hancock LG, Martin R, Lyons T, Tripati AE (2016) Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures. Nat Commun 7:12274–12212. https://doi.org/10.1038/ncomms12274

    Article  Google Scholar 

  • Martin RA, Nesbitt EA, Campbell KA (2007) Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps, Cascadia accretionary margin. Paleogeography, Paleoclimatolgy, Paleoecology 246:260–277

    Google Scholar 

  • Martin RA, Nesbitt EA, Campbell KA (2010) The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi margin of eastern New Zealand. Mar Geol 272:270–284. https://doi.org/10.1016/j.margeo.2009.03.024

    Article  Google Scholar 

  • Maslin M, Viela C, Mikkelsen N, Grootes P (2005) Causes of catastrophic sediment failures of the Amazon fan. Quat Sci Rev 24:2180–2193

    Google Scholar 

  • McCorkle DC, Keigwin LD, Corliss BH, Emerson SR (1990) The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 5:161–185

    Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, MacDonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79(4):523–555. https://doi.org/10.1890/08-2025.1

    Article  Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press

  • Naehr TH, Eichhubl P, Orphan VJ, Hovland M, Paull CK, Ussler W III, Lorenson TD, Green HG (2007) Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study. Deep-Sea Res II Top Stud Oceanogr 54:1268–1291

    Google Scholar 

  • Naehr TH, Birgel D, Bohrmann G, MacDonald IR, Kasten S (2009) Chemical geology 266, 390-402. In: Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”. Campeche, Bay of. https://doi.org/10.1016/j.chemgeo.2009.07.002

    Chapter  Google Scholar 

  • O’Neil JR, Epstein S (1966) Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science 152:198–201. https://doi.org/10.1126/science.152.3719.198

    Article  Google Scholar 

  • Orphan WG, Ussler W III, Naehr TH, House CH, Hinrichs K-U, Paull CK (2004) Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River basin, offshore California. Chem Geol 205:265–289

    Google Scholar 

  • Panieri G (2006) Foraminiferal response to an active methane seep environment: a case study from the Adriatic Sea. Mar Micropaleontol 61:116–130. https://doi.org/10.1016/j.marmicro.2006.05.008

    Article  Google Scholar 

  • Panieri G, Camerlenghi A, Conti S, Pini GA, Cacho I (2009) Methane seepages recorded in benthic foraminifera from Miocene seep carbonates,Northern Apennines (Italy). Palaeogeogr Palaeoclimatol Palaeoecol 284:271–282

    Google Scholar 

  • Panieri G, Camerlenghi A, Cacho I, Sanchez Cervera C, Canals M, Lafuerza S, Herrera G (2012) Tracing seafloor methane emissions with benthic foraminifera: results from the Anasubmarine landslide (Eivissa Channel, Western Mediterranean Sea). Mar Geol 291-294:97–112

    Google Scholar 

  • Panieri G, James RH, Camerlenghi A, Cesari V, Cervera CS, Cacho I, Westbrook GK (2014) Record of methane emissions from the West Svalbard continental margin during the last 16,000 years revealed by δ13C of benthic foraminifera. Glob Planet Chang 122:151–160. https://doi.org/10.1016/j.gloplacha.2014.08.014

    Article  Google Scholar 

  • Panieri G, Graves CA, James RH (2016) Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone off-shore western Svalbard. Geochem Geophys Geosyst 17(2):521–537. https://doi.org/10.1002/2015GC006153

    Article  Google Scholar 

  • Panieri G, Bünz S, Fornari DJ, Escartin J, Serov P, Jansson P, Torres ME, Johnson JE, Hong WL, Sauer S, Garcia R, Gracias N (2017a) An integrated view of the methane system in the pockmarks at Vestnesa ridge, 79°N. Mar Geol 390:282–300. https://doi.org/10.1016/j.margeo.2017.06.006

    Article  Google Scholar 

  • Panieri G, Lepland A, Whitehouse MJ, Wirth R, Raanes MP, James RH, Graves CA, Crémière A, Schneider A (2017b) Diagenetic mg-calcite overgrowths on foraminiferal tests in the vicinity of methane seeps. Earth Planet Sci Lett 458:203–212. https://doi.org/10.1016/j.epsl.2016.10.024

    Article  Google Scholar 

  • Petersen CJ, Bünz S, Hustoft S, Mienert J, Klaeschen D (2010) High-resolution P-cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift. Mar Pet Geol 27:1981–1994. https://doi.org/10.1016/j.marpetgeo.2010.06.006

    Article  Google Scholar 

  • Pierre C, Rouchy J-M, Blanc-Valleron MM (2002) Gas hydrate dissociation in the Lorca Basin (SE Spain) during the Mediterranean Messinian salinity crisis. Sediment Geol 147:247–252. https://doi.org/10.1016/S0037-0738(01)00232-9

    Article  Google Scholar 

  • Racine C, Bonnin J, Nam S-I, Giraudeau J, Biguenet M, Dessandier P-A, Kim J-H (2018) Distribution of living benthic foraminifera in the northern Chukchi Sea. Arktos 4:28–15. https://doi.org/10.1007/s41063-018-0062-y

    Article  Google Scholar 

  • Rathburn AE, Perez EM, Martin JB, Day SA, Mahn C, Gieskes J, Ziebis W, Williams D, Bahls A (2003) Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochem Geophys Geosyst 4. https://doi.org/10.1029/2003GC000595

  • Ravelo AC, Hillaire Marcel C (1999) The use of oxygen and carbon isotopes of foraminifera in Paleoceanography. In proxies in late Cenozoic Paleoceanography. Developments in Marine Geology 1:735–760

    Google Scholar 

  • Rise L, Bøe R, Riis F, Bellec VK, Laberg JS, Eidvin T, Elvenes S, Thorsnes T (2013) The Lofoten-Vesterålen continental margin. North Norway: canyons and mass-movement activity, Marine and Petroleum Geology 45:134–149

    Google Scholar 

  • Roberts HH, Aharon P (1994) Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Mar Lett 14:135–148

    Google Scholar 

  • Sauer S, Hong W-L, Knies J, Lepland A, Forwick M, Klug M, Eichinger F, Baranwal S, Crémière A, Chand S, Schubert CJ (2016) Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway. Geochem Geophys Geosyst 17:4011–4031

    Google Scholar 

  • Sauer S, Crémière A, Knies J, Lepland A, Sahy D, Martma T, Noble SR, Schönenberger J, Klug M, Schubert CJ (2017) U-Th chronology and formation controls of methane-derived authigenic carbonates from the Hola trough seep area, northern Norway. Chem Geol 470:164–179

    Google Scholar 

  • Schneider A, Crémière A, Panieri G, Lepland A, Knies J (2017) Diagenetic alteration of benthic foraminifera from a methane seep site on Vestnesa ridge (NW Svalbard). Deep-Sea Research I 123:22–34. https://doi.org/10.1016/j.dsr.2017.03.001

    Article  Google Scholar 

  • Schneider A, Panieri G, Lepland A, Consolaro C, Crèmiére A, Forwick M, Johnson JE, Plaza-Faverola A, Sauer S, Knies J (2018) Diagenetically altered benthic foraminifera reveal paleo-methane seepage. Quat Sci Rev 193:98–117

    Google Scholar 

  • Schönfeld J, Alve E, Geslin E, Jorissen F, Korsun S, Spezzaferri S (2012) The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—towards a standardized protocol for soft-bottom benthic foraminiferal monitoring studies. Mar Micropaleontol 94-95:1–13

    Google Scholar 

  • Schroeder JO, Murray RW, Leinen M, Pflaum RC, Janecek TR (1997) Barium in equatorial Pacific carbonate sediment: Terrigenous, oxide, and biogenic association. Paleoceanography 12:125–146

    Google Scholar 

  • Schumacher S, Jorissen F, Mackensen A, Gooday AI, Pays O (2010) Ontogenetic effects on stable carbon and oxygen isotopes in tests of live (rose Bengal stained) benthic foraminifera from the Pakistan continental margin. Mar Micropaleontol 76:92–103

    Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Google Scholar 

  • Sen Gupta BK, Aharon P (1994) Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico: initial report on communities and stable isotopes. Geo-Mar Lett 14:88–96

    Google Scholar 

  • Sen A, Himmler T, Hong W-L, Chitkara C, Lee RW, Ferré B, Lepland A, Knies J (2019) Atypical biological features of a new cold seep site on the Lofoten-Vesterålen continental margin (northern Norway). Sci Rep 9:1762. https://doi.org/10.1038/s41598-018-38070-9

    Article  Google Scholar 

  • Serov P, Vadakkepuliyambattaa S, Mienert J, Patton H, Portnov A, Silyakova A, Panieri G, Carroll ML, Carroll J, Andreassen K, Hubbard A (2017) Postglacial response of Arctic Ocean gas hydrates to climatic amelioration. Proc Natl Acad Sci U S A 114:6215–6220

    Google Scholar 

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Chang 77:85–96

    Google Scholar 

  • Sloan ED Jr, Koh C (2007) Clathrate hydrates of natural gases, 3rd edn. CRC Press

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Google Scholar 

  • Steinle L, Graves CA, Treude T, Ferre B, Biastoch A, Bussmann I, Berndt C, Krastel S, James RH, Behrens E, Böning CW, Greinert J, Sapart C-J, Schreinert M, Sommer S, Lehmann MF, Niemann H (2015) Water column methanotrophy controlled by a rapid oceanographic switch. Nat Geosci 8:378–382

    Google Scholar 

  • Tagliabue A, Bopp L (2008) Towards understanding global variability in ocean carbon-13. Gloobal Biogeochemical Cycles 22:GB1025. https://doi.org/10.1029/2007GB003037

    Article  Google Scholar 

  • Talwani, M. and Eldholm, O., 1977, Evolution of the Norwegian-Greenland Sea: Geological Society of America Bulletin 88, 969–999. doi: 10.1130 /0016–606(1977)88<969:EOTNS>2.0 .CO;2

  • Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996. https://doi.org/10.1016/0016-7037(69)90108-2

    Article  Google Scholar 

  • Thatcher KE, Westbrook GK, Sarkar S, Minshull TA (2013) Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: timing, rates, and geological controls. J Geophys Res Solid Earth 118:22–38

    Google Scholar 

  • Thiede J, Winkler A, Wolf-Welling T, Eldholm O, Myhre AM, Baumann KH, Henrich R, Stein R (1998) Late Cenozoic history of the polar North Atlantic: results from ocean drilling. Quat Sci Rev 17:185–208

    Google Scholar 

  • Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30:1067–1070

    Google Scholar 

  • Tomaru H, Torres ME, Matsumoto R, Borowski WS (2006) Effect of massive gas hydrate formation on the water isotopic fractionation of the gas hydrate system at Hydrate Ridge, Cascadia margin, offshore Oregon. Geochemistry Geophysics Geosystems 7:Q10001. https://doi.org/10.1029/2005gc001207

    Article  Google Scholar 

  • Torres ME, Mix AC, Kinports K, Haley B, Klinkhammer GP, McManus J, de Angelis MA (2003) Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography 18(3):1062. https://doi.org/10.1029/2002PA000824

    Article  Google Scholar 

  • Torres ME, Mix AC, Rugh WD (2005) Precise delta C-13 analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry. Limnology and Oceanography-Methods 3:349–360

    Google Scholar 

  • Ussler W, Paull CK (2008) Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth Planet Sci Lett 266:271–287

    Google Scholar 

  • Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology:33

  • Vogt PR, Crane K, Sundvor E, Max MD, Pfirman SL (1994) Methane-generated (?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram Strait. Geology 22:255–258

    Google Scholar 

  • Walton, W.R., 1952. Techniques for recognition of living foraminifera. In: contribution of the Cushman Foundation for Foraminiferal Research. 3. Pp. 56–60

  • Wan S, Feng D, Chen F, Zhuang C, Chen D (2018) Foraminifera from gas hydrate-bearing sediments of the northeastern South China Sea: proxy evaluation and application for methane release activity. J Asian Earth Sci 168:125–136

    Google Scholar 

  • Wefer G, Heinze P-M, Berger WH (1994) Clues to ancient methane release. Nature 369:282

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Google Scholar 

  • Yao H, Hong W-L, Panieri G, Sauer S, Torres ME, Lehmann MF, Gründger F, Niemann H (2019) Fracture-controlled fluid transport supports microbial methane-oxidizing communities at the Vestnesa ridge. Biogeosciences 16:2221–2232

    Google Scholar 

  • Yoshinaga MY, Holler T, Goldhammer T, Wegener G, Pohlman JW, Brunner B, Kuypers MM, Hinrichs K-U, Elvert M (2014) Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. Nat Geosci 7:190

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the captain and the crew of the R/V G.O. Sars and Helmer Hanssen. The authors thank two anonymous reviewers and the Editor Gerald R. Dickens for comments that greatly improved the manuscript.

Funding

This study has been funded by the project Petromaks2 Norcrust–Norwegian margin fluid systems and methane-derived authigenic carbonate crusts (project no. 255150) and the Research Council of Norway through CAGE Center for Excellence in Arctic Gas Hydrate Environment grant 287 no. 223259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Antoine Dessandier.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dessandier, PA., Borrelli, C., Yao, H. et al. Foraminiferal δ18O reveals gas hydrate dissociation in Arctic and North Atlantic ocean sediments. Geo-Mar Lett 40, 507–523 (2020). https://doi.org/10.1007/s00367-019-00635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-019-00635-6

Keywords

Navigation