Skip to main content

Advertisement

Log in

Prospects to select tall fescue with a low silica concentration

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Although not essential to most plant species, silica plays an important role in the protection of plants against different types of stress. In monocots, the main role of silica is protection against herbivores. Although the mechanisms are not fully understood yet, it is clear that silica discourages the grazing of herbivores. Hence, high silica concentrations are unwanted in forage crops and grasses that are grown as a feed for ruminants. In this paper, we explored the possibilities to select forage grasses with a low silica concentration. In a yield trial comparing five forage grass species under cutting management, we found the highest and lowest silica concentrations respectively in tall fescue (Festuca arundinacea Schreb.) (0.7% averaged over all cuts) and perennial ryegrass (Lolium perenne L.) (0.35% averaged over all cuts). We found a negative effect of the silica concentration on digestibility of the organic mass (DOM). This effect was particularly strong in the first cut: − 4.9% points DOM per 0.1% points in silica concentration. In a screening of tall fescue nurseries for silica concentration, a range between 0.05% and 1.57% was found and there was a weak negative correlation between DOM and silica concentration. Based on a progeny test, a narrow sense heritability for silica concentration of 0.78 was calculated. Given the presence of both variation and a high heritability, selection for lower silica concentrations in tall fescue is promising. The simultaneous selection for DOM and low silica content offers good perspectives to improve the feeding quality of tall fescue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agbagla-Dohnani A, Noziere P, Gaillard-Martinie B, Puard M, Doreau M (2003) Effect of silica content on rice straw ruminal degradation. J Agric Sci 140:183–192

    Article  CAS  Google Scholar 

  • Allen VG, Batello C, Berretta E, Hodgson J, Kothmann M, Li X, Peeters A (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28

    Article  Google Scholar 

  • Baker G, Jones L, Wardrop I (1959) Cause of wear in sheeps’ teeth. Nature 184:1583–1584

    Article  Google Scholar 

  • Cotterill JV, Watkins RW, Brennon CB, Cowan DP (2007) Boosting silica levels in wheat leaves reduces grazing by rabbits. Pest Manag Sci 63:247–253. https://doi.org/10.1002/ps.1302

    Article  CAS  PubMed  Google Scholar 

  • Cougnon M, Baert J, Van Waes C, Reheul D (2014) Performance and quality of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) and mixtures of both species grown with or without white clover (Trifolium repens L.) under cutting management. Grass Forage Sci 69:666–677. https://doi.org/10.1111/gfs.12102

    Article  Google Scholar 

  • Cougnon M, Shahidi R, Struyf E, Van Waes C, Reheul D (2016a) Silica content, leaf softness and digestibility in tall fescue (Festuca arundinacea Schreb.). In: Roldán-Ruiz I, Baert J, Reheul D (eds) Breeding in a world of scarcity. Springer, Cham, pp 277–281

    Google Scholar 

  • Cougnon M, Van Waes C, Struyf E, Schoelynck J, Reheul D (2016b) Use of near infrared reflectance spectroscopy for the determination of silica content in tall fescue. Grassland Sci Eur 21:197–199

    Google Scholar 

  • Cougnon M et al (2017) In situ quantification of forage grass root biomass, distribution and diameter classes under two N fertilisation rates. Plant Soil 411:409–422

    Article  CAS  Google Scholar 

  • Cougnon M et al (2018) Factors affecting grazing preference by sheep in a breeding population of tall fescue (Festuca arundinacea Schreb.). Grass Forage Sci 73:330–339

    Article  Google Scholar 

  • De Boever J, Cottyn B, De Brabander D, Vanacker J, Boucqué CV (1996) Prediction of the feeding value of grass silages by chemical parameters, in vitro digestibility and near-infrared reflectance spectroscopy. Anim Feed Sci Technol 60:103–115

    Article  Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Article  CAS  Google Scholar 

  • Falconer DS (1960) Introduction to quantitative genetics. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213. https://doi.org/10.1007/s13593-011-0039-8

    Article  Google Scholar 

  • Hartley SE, De Gabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30:1311–1322

    Article  Google Scholar 

  • Hartley SE, Fitt RN, McLarnon EL, Wade RN (2015) Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Front Plant Sci 6:35. https://doi.org/10.3389/fpls.2015.00035

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodson MJ (2019) The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Front Earth Sci 7:167

    Article  Google Scholar 

  • Jadas-Hécart J (1982) Etude de l’appétibilité de fétuques élevées (Festuca arundinacea Schreb.) à l’aide de moutons. Agronomie 2:487–492

    Article  Google Scholar 

  • Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in Agriculture. Springer, Dordrecht

    Book  Google Scholar 

  • Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc Biol Sci 273:2299–2304. https://doi.org/10.1098/rspb.2006.3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2007) Grasses and the resource availability hypothesis: the importance of silica-based defences. J Ecol 95:414–424. https://doi.org/10.1111/j.1365-2745.2007.01223.x

    Article  CAS  Google Scholar 

  • Massey FP, Smith MJ, Lambin X, Hartley SE (2008) Are silica defences in grasses driving vole population cycles? Biol Let 4:419–422

    Article  CAS  Google Scholar 

  • Massey FP, Massey K, Ennos AR, Hartley SE (2009) Impacts of silica-based defences in grasses on the feeding preferences of sheep. Basic Appl Ecol 10:622–630

    Article  CAS  Google Scholar 

  • Mir SH, Rashid I, Hussain B, Reshi ZA, Assad R, Sofi IA (2019) Silicon supplementation of rescuegrass reduces herbivory by a grasshopper. Front Plant Sci 10:671

    Article  Google Scholar 

  • Olesen K (1976) A completely balanced polycross design. Euphytica 25:485–488

    Article  Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2003) Systematics and biology of silica bodies in monocotyledons. Botan Rev 69:377–440

    Article  Google Scholar 

  • Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L). J Plant Physiol 151:497–501. https://doi.org/10.1016/s0176-1617(97)80017-x

    Article  CAS  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    Article  CAS  Google Scholar 

  • R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

  • Saccone L et al (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    Article  CAS  Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186:385–391

    Article  CAS  Google Scholar 

  • Stählin A, Tirtapradja H (1971) Uber die Aufnahme und Einlagerung von Silizium in futtergrasern. Zeitschrift für Acker- und Pflanzenbau 134:295–312

    Google Scholar 

  • Straëbler M (2016) Ventes de semences fourragères en mélange: quelles compositions et quelles tendances observe-t-on? Fourrages 225:49–54

    Google Scholar 

  • Strömberg CA, Di Stilio VS, Song Z (2016) Functions of phytoliths in vascular plants: an evolutionary perspective. Funct Ecol 30:1286–1297

    Article  Google Scholar 

  • Suter D, Frick R, Hirschi H, Chapuis S (2009) Rohrschwingel-und Timothesorten geprüft. Agrarforschung. 16:250–255

    Google Scholar 

  • Van Bockhaven J et al (2015) Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773

    Article  Google Scholar 

  • Van Soest P, Jones L (1968) Effect of silica in forages upon digestibility. J Dairy Sci 51:1644–1648

    Article  Google Scholar 

  • Volaire F, Barkaoui K, Norton M (2014) Designing resilient and sustainable grasslands for a drier future: adaptive strategies, functional traits and biotic interactions. Eur J Agron 52:81–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cougnon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cougnon, M., Schoelynck, J., Van den Eynde, R. et al. Prospects to select tall fescue with a low silica concentration. Euphytica 216, 129 (2020). https://doi.org/10.1007/s10681-020-02663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02663-1

Keywords

Navigation