Skip to main content
Log in

Microbial community shift under exposure of dredged sediments from a eutrophic bay

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Microbial communities occur in almost every habitat. To evaluate the homeostasis disruption of in situ microbiomes, dredged sediments from Guanabara Bay-Brazil (GB) were mixed with sediments from outside of the bay (D) in three different proportions (25%, 50%, and 75%) which we called GBD25, GBD50, and GBD75. Grain size, TOC, and metals—as indicators of complex contamination—dehydrogenase (DHA) and esterase enzymes (EST)—as indicators of microbial community availability—were determined. Microbial community composition was addressed by amplifying the 16S rRNA gene for DGGE analysis and sequencing using MiSeq platform (Illumina).We applied the quality ratio index (QR) to the GB, D, and every GBD mixture to integrate geochemical parameters with our microbiome data. QR indicated high environmental risk for GB and every GBD mixture, and low risk for D. The community shifted from aerobic to anaerobic profile, consistent with the characteristics of GB. Sample D was dominated by JTB255 marine benthic group, related to low impacted areas. Milano-WF1B-44 was the most representative of GB, often found in anaerobic and sulfur enriched environments. In GBD, the denitrifying sulfur-oxidizing bacteria, Sulfurovum, was the most representative, typically found in suboxic or anoxic niches. The canonical correspondence analysis was able to explain 60% of the community composition variation and exhibit the decrease of environmental quality as the contamination increases. Physiological and taxonomic shifts of the microbial assemblage in sediments were inferred by QR, which was suitable to determine sediment risk. The study produced sufficient information to improve the dredging plan and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abriak, N. E., Junqua, G., Dubois, V., Gregoire, P., Mac Farlane, F., & Damidot, D. (2006). Methodology of management of dredging operations I. Conceptual Developments. Environmental Technology, 27(4), 411–429. https://doi.org/10.1080/09593332708618653.

  • Agius, S. J., & Porebski, L. (2008). Towards the assessment and management of contaminated dredged materials. Integrated Environmental Assessment and Management, 4(2), 255–260.

    Article  CAS  Google Scholar 

  • Allison, S. D., & Martiny, J. B. H. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105(Supplement 1), 11512–11519. https://doi.org/10.1073/pnas.0801925105.

    Article  Google Scholar 

  • Alonso-Gutiérrez, J., Figueras, A., Albaigés, J., Jiménez, N., Viñas, M., Solanas, A. M., & Novoa, B. (2009). Bacterial communities from shoreline environments (Costa da Morte, northwestern Spain) affected by the prestige oil spill. Applied and Environmental Microbiology, 75(11), 3407–3418. https://doi.org/10.1128/AEM.01776-08.

  • Aylagas, E., Borja, Á., Tangherlini, M., Dell’Anno, A., Corinaldesi, C., Michell, C. T., Irigoien, X., Danovaro, R., & Rodríguez-Ezpeleta, N. (2017). A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Marine Pollution Bulletin, 114(2), 679–688. https://doi.org/10.1016/j.marpolbul.2016.10.050.

    Article  CAS  Google Scholar 

  • Baptista-Neto, J.A., Barreto, C.F., Vilela, C.G., da Fonseca, E.M., Melo, G.V., Barth, O.M., (2016). Environmental change in Guanabara Bay, SE Brazil, based in microfaunal, pollen and geochemical geochemical proxies in sedimentary cores. Ocean and Coastal. Management

  • Bidone, E. D., & Lacerda, L. D. (2004). The use of DPSIR framework to evaluate sustainability in coastal areas. Case study: Guanabara Bay basin, Rio de Janeiro, Brazil. Regional Environmental Change, 4(1), 5–16. https://doi.org/10.1007/s10113-003-0059-2.

    Article  Google Scholar 

  • Bidone, E. D., Fiori, R. P., Rodrigues, A. P., Pires, M. F., & Castilhos, Z. C. (2009). Custo sócio-econômico de dragagens portuárias. Gestão Ambiental Portuária-Subsídios Para o Licenciamento Das Dragagens, 75–88.

  • Bienhold, C., Zinger, L., Boetius, A., & Ramette, A. (2016). Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS One, 11(1), 1–20. https://doi.org/10.1371/journal.pone.0148016.

    Article  CAS  Google Scholar 

  • Brasil. (2012). Resolução CONAMA No 454. 1o de Novembro 2012. Estabelece as diretrizes gerais e os procedimentos referenciais para o gerenciamento do material a ser dragado em águas sob jurisdição nacional. 66–69. Seção 1.

  • Brons, J. K., & Van Elsas, J. D. (2008). Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Applied and Environmental Microbiology, 74(9), 2717–2727. https://doi.org/10.1128/AEM.02195-07.

    Article  CAS  Google Scholar 

  • Busch, J., Nascimento, J. R., Magalhães, A. C. R., Dutilh, B. E., & Dinsdale, E. (2015). Copper tolerance and distribution of epibiotic bacteria associated with giant kelp Macrocystis pyrifera in southern California. Ecotoxicology. https://doi.org/10.1007/s10646-015-1460-6, 24, 1131, 1140.

  • Canadian Council. (1999). Protocol for the derivation of canadian sediment quality guidelines for the protection of aquatic life (p. 35). ceqg-rcqe.ccme.ca/download/en/226/.

  • Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011a). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(Supplement_1), 4516–4522. https://doi.org/10.1073/pnas.1000080107.

    Article  Google Scholar 

  • Caporaso, J. G., Lauber, C. L., Costello, E. K., Berg-Lyons, D., Gonzalez, A., Stombaugh, J., Knights, D., Gajer, P., Ravel, J., Fierer, N., Gordon, J. I., & Knight, R. (2011b). Moving pictures of the human microbiome. Genome Biology, 12(5), R50. https://doi.org/10.1186/gb-2011-12-5-r50.

    Article  Google Scholar 

  • Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V., … Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). https://doi.org/10.3109/1040841X.2015.1087380, 883, 904.

  • Cesar, R., Natal-da-Luz, T., Bidone, E., Castilhos, Z., Polivanov, H., & Sousa, J. P. (2015). Disposal of dredged sediments in tropical soils: ecotoxicological evaluation based on bioassays with springtails and enchytraeids. Environmental Science and Pollution Research, 22(4), 2916–2924. https://doi.org/10.1007/s11356-014-3559-3.

  • Convention, L. (1972). Summary for policymakers. In Intergovernmental Panel on Climate Change (Ed.), Climate Change 2013 - The Physical Science Basis (Issue July 1974 (pp. 1–30). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004.

  • Cordeiro, R. C., Machado, W., Santelli, R. E., Figueiredo, A. G., Seoane, J. C. S., Oliveira, E. P., Freire, A. S., Bidone, E. D., Monteiro, F. F., Silva, F. T., & Meniconi, M. F. G. (2015). Geochemical fractionation of metals and semimetals in surface sediments from tropical impacted estuary (Guanabara Bay, Brazil). Environmental Earth Sciences, 74(2), 1363–1378. https://doi.org/10.1007/s12665-015-4127-y.

  • Corinaldesi, C., Tangherlini, M., Manea, E., & Dell’Anno, A. (2018). Extracellular DNA as a genetic recorder of microbial diversity in benthic deep-sea ecosystems. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-20302-7.

    Article  CAS  Google Scholar 

  • Cornall, A., Rose, A., Streten, C., Mcguinness, K., Parry, D., & Gibb, K. (2016). Molecular screening of microbial communities for candidate indicators of multiple metal impacts in marine sediments from northern Australia. Environmental Toxicology and Chemistry, 35(2), 468–484. https://doi.org/10.1002/etc.3205.

    Article  CAS  Google Scholar 

  • Cotovicz, L. C., Knoppers, B. A., Brandini, N., Poirier, D., Costa Santos, S. J., Cordeiro, R. C., & Abril, G. (2018). Predominance of phytoplankton-derived dissolved and particulate organic carbon in a highly eutrophic tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeochemistry, 137(1–2), 1–14. https://doi.org/10.1007/s10533-017-0405-y.

    Article  CAS  Google Scholar 

  • Couto, C. R. d. A., Jurelevicius, D. d. A., Alvarez, V. M., van Elsas, J. D., & Seldin, L. (2016). Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants. Journal of Environmental Management, 184, 473–479. https://doi.org/10.1016/j.jenvman.2016.10.039.

    Article  CAS  Google Scholar 

  • Crapez, M. A. C., Baptista-Neto, J. A., & Bispo, M. G. S. (2003). Bacterial enzymatic activity and bioavailability of heavy metals in sediments from Boa Viagem Beach. Anuário Instituto Geociências - UFRJ, 26, 60–68.

  • Decho, A. W. (2000). Microbial biofilms in intertidal systems: an overview. Continental Shelf Research, 20, 1257–1273.

  • Fiori, C. da S. F., Rodrigues, A. P. de C., Santelli, R. E., Cordeiro, R. C., Carvalheira, R. G., Araújo, P. C., Castilhos, Z. C., & Bidone, E. D. (2013). Ecological risk index for aquatic pollution control: a case study of coastal water bodies from the Rio de Janeiro State, southeastern Brazil. Geochimica Brasiliensis, 2(5), 24–36. https://doi.org/10.5327/Z0102-9800201300010003.

  • Fistarol, G. O., Coutinho, F. H., Moreira, A. P. B., Venas, T., Cánovas, A., de Paula, S. E. M., Coutinho, R., de Moura, R. L., Valentin, J. L., Tenenbaum, D. R., Paranhos, R., do Valle, R. d. A. B., Vicente, A. C. P., Amado Filho, G. M., Pereira, R. C., Kruger, R., Rezende, C. E., Thompson, C. C., Salomon, P. S., & Thompson, F. L. (2015). Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Frontiers in Microbiology, 6(NOV), 1–17. https://doi.org/10.3389/fmicb.2015.01232.

    Article  Google Scholar 

  • Flemming, H.-C. (2016). EPS—Then and Now. Microorganisms, 4(4), 41. https://doi.org/10.3390/microorganisms4040041.

    Article  CAS  Google Scholar 

  • Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 19(2), 139–150. https://doi.org/10.1038/nrmicro2415.

    Article  CAS  Google Scholar 

  • Fonseca, E. M., Neto, J. A. B., Crapez, M. C., McAllister, J. J., Fernandez, M. A., & Bispo, M. G. (2009). Bioavailability of heavy metals in Guanabara Bay, Rio de Janeiro (Brazil). Journal of Coastal Research, 2009(56), 802–806. https://doi.org/10.2112/JCOASTRES-D-12-00.

  • Fonseca, E. M., Baptista Neto, J. A., Silva, C. G., McAlister, J. J., Smith, B. J., & Fernandez, M. A. (2013). Stormwater impact in Guanabara Bay (Rio de Janeiro): evidences of seasonal variability in the dynamic of the sediment heavy metals. Estuarine, Coastal and Shelf Science, 130, 161–168. https://doi.org/10.1016/j.ecss.2013.04.022.

  • Fontana, L. F., Mendonça Filho, J. G., Pereira Netto, A. D., Sabadini-Santos, E., de Figueiredo, A. G., & Crapez, M. A. C. (2010). Geomicrobiology of cores from Suruí Mangrove - Guanabara Bay - Brazil. Marine Pollution Bulletin, 60(10), 1674–1681. https://doi.org/10.1016/j.marpolbul.2010.06.049.

  • Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41(10), 2031–2037. https://doi.org/10.1016/j.soilbio.2009.04.026.

    Article  CAS  Google Scholar 

  • Guo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environmental Sciences, 2(5), 729–736. https://doi.org/10.1016/j.proenv.2010.10.084.

  • Guo, G., Ekama, G. A., Wang, Y., Dai, J., Biswal, B. K., Chen, G., & Wu, D. (2019). Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: a review. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.03.142, 285, 121303.

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Harrison, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews. Microbiology, 5(12), 928–938. https://doi.org/10.1038/nrmicro1774.

  • Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3–4), 321–377. https://doi.org/10.1093/biomet/28.3-4.321

  • Irha, N., Slet, J., & Petersell, V. (2003). Effect of heavy metals and PAH on soil assessed via dehydrogenase assay. No Title. Environment International, 28, 779–782.

  • Janssen, C. R., & Persoone, G. (1993). Rapid toxicity screening tests for aquatic biota 1. Methodology and experiments with Daphnia magna. Environmental Toxicology and Chemistry, 12(4), 711–717. https://doi.org/10.1002/etc.5620120413.

  • Johnson, B. T., & Long, E. R. (1998). Rapid toxicity assessment of sediments from estuarine ecosystems: a new tandem in vitro testing approach. Environmental Toxicology and Chemistry, 17(6), 1099. https://doi.org/10.1897/1551-5028(1998)017<1099:RTAOSF>2.3.CO;2, 1106.

  • Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. https://doi.org/10.1093/bioinformatics/btq166.

    Article  CAS  Google Scholar 

  • Kepner, R. L., & Pratt, J. R. (1994). Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiological Reviews, 58(4), 603–615. https://doi.org/0146-0749/94/

  • Kjerfve, B., Ribeiro, C. H. A., Dias, G. T. M., Filippo, A. M., & Da Silva Quaresma, V. (1997). Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Continental Shelf Research, 17(13), 1609–1643. https://doi.org/10.1016/S0278-4343(97)00028-9.

    Article  Google Scholar 

  • Lipsewers, Y. A., Vasquez-Cardenas, D., Seitaj, D., Schauer, R., Hidalgo-Martinez, S., Damsté, J. S. S., Meysman, F. J. R., Villanueva, L., & Boschker, H. T. S. (2017). Impact of seasonal hypoxia on activity and community structure of chemolithoautotrophic bacteria in a coastal sediment. Applied and Environmental Microbiology, 83(10). https://doi.org/10.1128/AEM.03517-16.

  • Long, E., MacDonald, D., & Smith, S. (1995). Incidence of adverse bilogical effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97.

    Article  Google Scholar 

  • Long, E. R., Hong, C. B., & Severn, C. G. (2001). Relationships between acute sediment toxicity in laboratory tests and abundance and diversity of benthic infauna in marine sediments: a review. Environmental Toxicology and Chemistry, 20(1), 46–60. https://doi.org/10.1002/etc.5620200105.

    Article  CAS  Google Scholar 

  • Manap, N., & Voulvoulis, N. (2014). Risk-based decision-making framework for the selection of sediment dredging option. Science of the Total Environment, 496, 607–623. https://doi.org/10.1016/j.scitotenv.2014.07.009.

    Article  CAS  Google Scholar 

  • Manap, N., & Voulvoulis, N. (2015). Environmental management for dredging sediments - the requirement of developing nations. Journal of Environmental Management, 147, 338–348. https://doi.org/10.1016/j.jenvman.2014.09.024.

    Article  Google Scholar 

  • Meniconi, M. F. G. (2002). Brazilian oil spills chemical characterization—case studies. Environmental Forensics, 3(3–4), 303–321. https://doi.org/10.1006/enfo.2002.0101.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L. A., & Köster, M. (2000). Eutrophication of marine waters: effects on benthic microbial communities. Marine Pollution Bulletin, 41, 255–263.

  • Monteiro, F. F., Cordeiro, R. C., Santelli, R. E., Machado, W., Evangelista, H., Villar, L. S., Viana, L. C. A., & Bidone, E. D. (2012). Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environmental Earth Sciences, 65(6), 1661–1669. https://doi.org/10.1007/s12665-011-1143-4.

    Article  CAS  Google Scholar 

  • Mora, A. P. d., Ortega-Calvo, J. J., Cabrera, F., & Madejón, E. (2005). Changes in enzyme activities andmicrobial biomass after “in situ” remediation of a heavymetal-contaminated soil. Applied Soil Ecology, 28, 125–137.

    Article  Google Scholar 

  • Mußmann, M., Pjevac, P., Krüger, K. & Dyksma, S. (2017). Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME Journal 11, 1276–1281.

  • Müller, A. L., Pelikan, C., de Rezende, J. R., Wasmund, K., Putz, M., Glombitza, C., Kjeldsen, K. U., Jørgensen, B. B., & Loy, A. (2018). Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environmental Microbiology, 20(8), 2927–2940. https://doi.org/10.1111/1462-2920.14297.

    Article  CAS  Google Scholar 

  • Mumtaz Moiz, M., Suk, W. A., & Yang, R. S. H. (2010). Introduction to mixtures toxicology and risk assessment. Principles and Practice of Mixtures Toxicology, 1–25. https://doi.org/10.1002/9783527630196.ch1.

  • Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700 https://doi.org/0099-2240/93/030695-06$02.00/0.

    Article  CAS  Google Scholar 

  • Nascimento, J. R., Silveira, A. E. F., Bidone, E. D., & Sabadini-Santos, E. (2019). Microbial community activity in response to multiple contaminant exposure: a feasible tool for sediment quality assessment. Environmental Monitoring and Assessment, 191(6), 392. https://doi.org/10.1007/s10661-019-7532-y.

    Article  Google Scholar 

  • Nogales, B., Lanfranconi, M. P., Piña-Villalonga, J. M., & Bosch, R. (2011). Anthropogenic perturbations in marine microbial communities. FEMS Microbiology Reviews, 35(2), 275–298. https://doi.org/10.1111/j.1574-6976.2010.00248.x.

    Article  CAS  Google Scholar 

  • Obbard, J. P., Sauerbeck, D., & Jones, K. C. (1994). Dehydrogenase activity of the microbial biomass in soils from a field experiment amended with heavy metal contaminated sewage sludges. Science of the Total Environment, 142(3), 157–162. https://doi.org/10.1016/0048-9697(94)90323-9.

    Article  CAS  Google Scholar 

  • Odum, E. P. (1985). Trends expected in stressed ecosystems. BioScience, 35(7), 419–422. https://doi.org/10.2307/1310021.

    Article  Google Scholar 

  • Oksanen, A. J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P. R., Hara, R. B. O., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Szoecs, E. (2016). Package ‘ vegan .’ December.

    Google Scholar 

  • Paissé, S., Coulon, F., Goñi-Urriza, M., Peperzak, L., McGenity, T. J., & Duran, R. (2008). Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiology Ecology, 66(2), 295–305. https://doi.org/10.1111/j.1574-6941.2008.00589.x.

    Article  CAS  Google Scholar 

  • Pjevac, P., Kamyshny, A., Dyksma, S., & Mußmann, M. (2014). Microbial consumption of zero-valence sulfur in marine benthic habitats. Environmental Microbiology, 16(11), 3416–3430. https://doi.org/10.1111/1462-2920.12410.

    Article  CAS  Google Scholar 

  • Probandt, D., Eickhorst, T., Ellrott, A., Amann, R., & Knittel, K. (2018). Microbial life on a sand grain: from bulk sediment to single grains. ISME Journal, 12(2), 623–633. https://doi.org/10.1038/ismej.2017.197.

    Article  Google Scholar 

  • Prosser, J. I., Bohannan, B. J. M., Curtis, T. P., Ellis, R. J., Firestone, M. K., Freckleton, R. P., Green, J. L., Green, L. E., Killham, K., Lennon, J. J., Osborn, a M., Solan, M., van der Gast, C. J., & Young, J. P. W. (2007). The role of ecological theory in microbial ecology. Nature Reviews. Microbiology, 5(5), 384–392. https://doi.org/10.1038/nrmicro1643.

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), 590–596. https://doi.org/10.1093/nar/gks1219.

    Article  CAS  Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

  • Ranjard, L., Poly, F., & Nazaret, S. (2000). Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Research in Microbiology, 151, 167–177 https://doi.org/S0923-2508(00)00136-4 [pii].

    Article  CAS  Google Scholar 

  • Rosado, D., Usero, J., & Morillo, J. (2015). Application of a new integrated sediment quality assessment method to Huelva estuary and its littoral of influence (Southwestern Spain). Marine Pollution Bulletin, 98(1–2), 106–114. https://doi.org/10.1016/j.marpolbul.2015.07.008.

  • Sabadini-Santos, E., Da Silva, T. S., Lopes-Rosa, T. D., Mendonça-Filho, J. G., Santelli, R. E., & Crapez, M. A. C. (2014a). Microbial activities and bioavailable concentrations of Cu, Zn, and Pb in sediments from a tropic and eutrothicated bay. Water, Air, and Soil Pollution, 225(5). https://doi.org/10.1007/s11270-014-1949-2.

  • Sabadini-Santos, E., Senez, T. M., Silva, T. S., Moreira, M. R., Mendonça-Filho, J. G., Santelli, R. E., & Crapez, M. A. C. (2014b). Organic matter and pyritization relationship in recent sediments from a tropical and eutrophic bay. Marine Pollution Bulletin, 89(1–2), 220–228. https://doi.org/10.1016/j.marpolbul.2014.09.055.

    Article  CAS  Google Scholar 

  • Said, W. a., & Lewis, D. L. (1991). Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Applied and Environmental Microbiology, 57(5), 1498–1503 http://aem.asm.org/content/57/5/1498.short.

    Article  CAS  Google Scholar 

  • Saxena, G., Marzinelli, E. M., Naing, N. N., He, Z., Liang, Y., Tom, L., Mitra, S., Ping, H., Joshi, U. M., Reuben, S., Mynampati, K. C., Mishra, S., Umashankar, S., Zhou, J., Andersen, G. L., Kjelleberg, S., & Swarup, S. (2015). Ecogenomics reveals metals and land-use pressures on microbial communities in the waterways of a megacity. Environmental Science and Technology, 49(3), 1462–1471. https://doi.org/10.1021/es504531s.

    Article  CAS  Google Scholar 

  • Schexnayder, C. (2010). Panama canal project revs up with new award. ENR, 265(1).

  • Shannon, C. E., & Wiener, W. (1963). The mathematical theory of communication. University of Illinois Press.

  • Shen, G., Lu, Y., Zhou, Q., & Hong, J. (2005). Hydrocarbons, interaction of polycyclic aromatic enzyme., and heavy metals on soil.

  • Silveira, A. E. F., Nascimento, J. R., Sabadini-santos, E., & Bidone, E. D. (2017). Screening-level risk assessment applied to dredging of polluted sediments from. Marine Pollution Bulletin., 118, 368–375. https://doi.org/10.1016/j.marpolbul.2017.03.016.

    Article  CAS  Google Scholar 

  • Soares-Gomes, A., da Gama, B. A. P., Baptista Neto, J. A., Freire, D. G., Cordeiro, R. C., Machado, W., Bernardes, M. C., Coutinho, R., Thompson, F. L., & Pereira, R. C. (2015). An environmental overview of Guanabara Bay, Rio de Janeiro. Regional Studies in Marine Science, 8, 319–330. https://doi.org/10.1016/j.rsma.2016.01.009.

    Article  Google Scholar 

  • Sobolev, D., Begonia, M. F. T. (2008). Effects of heavy metal contamination upon soil microbes: Leadinduced changes in general and denitrifying microbial communities as evidenced by molecular markers. International Journal of Environmental Research and Public Health, 5, 450–456. https://doi.org/10.3390/ijerph5050450.

  • Steffan, S. A., Chikaraishi, Y., Currie, C. R., Horn, H., Gaines-Day, H. R., Pauli, J. N., Zalapa, J. E.,& Ohkouchi, N. (2015). Microbes are trophic analogs of animals. Proceedings of the National Academy of Sciences, 112, 15119–15124. https://doi.org/10.1073/pnas.1508782112.

  • Stubberfield, L. C. F., & Shaw, P. J. A. (1990). A comparison of tetrazolium reduction and FDA hydrolysis with other measures of microbial activity. Journal of Microbiological Methods, 12, 151–162.

    Article  CAS  Google Scholar 

  • Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Zech Xu, Z., Jiang, L., … Knight, R. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(7681), 457–463. https://doi.org/10.1038/nature24621.

  • Trembath-Reichert, E., Case, D. H., & Orphan, V. J. (2016). Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ, 4, e1913. https://doi.org/10.7717/peerj.1913.

  • Trevors, J. T., Mayfield, C. I., & Inniss, W. E. (1982). Measurement of Electron transport system (ETS) activity in soil. Microbial Ecology, 8(2), 163–168. https://doi.org/10.1007/BF02010449.

    Article  CAS  Google Scholar 

  • Ugarelli, K., Laas, P., & Stingl, U. (2018). The microbial communities of leaves and roots associated with turtle grass (Thalassia testudinum) and manatee grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites. Microorganisms, 7(1), 4. https://doi.org/10.3390/microorganisms7010004.

  • Ulitzur, S., Lahav, T., & Ulitzur, N. (2002). A novel and sensitive test for rapid determination of water toxicity. Environmental Toxicology, 17(3), 291–296. https://doi.org/10.1002/tox.10060.

    Article  CAS  Google Scholar 

  • USEPA. (2004). Innovative technology verification report: field measurement technology for mercury in soil and sediment. Ohio Lumex’s RA-915þ/RP-91C mercury analyser. EPA/600/R-03/147. (p. 86).

  • USEPA. (2007). Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. February, 1–30.

  • USEPA (United States Environmental Protection Agency/Department of The Army U.S. Army Corps of Engineers). (1991). Evaluation of dredged material proposed for ocean disposal — testing manual, EPA-503-8-91/001. (p. EPA 503/8–91-001). EPA 503/8–91-001.

  • van Beelen, P., & Doelman, P. (1997). Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere, 34(3), 455–499. https://doi.org/10.1016/S0045-6535(96)00388-8.

  • van Gestel, C. A. M., Jonker, M. J., Kammenga, J. E., Laskowski, R., & Svendsen, C. (2011). Mixture toxicity: linking approaches from ecology and human toxicology.

  • Waite, C. C. d. C., da Silva, G. O. A., Bitencourt, J. A. P., Sabadini-Santos, E., & Crapez, M. A. C. (2016). Copper and lead removal from aqueous solutions by bacterial consortia acting as biosorbents. Marine Pollution Bulletin, 109(1), 386–392. https://doi.org/10.1016/j.marpolbul.2016.05.044.

    Article  CAS  Google Scholar 

  • Wang, X. Y., & Feng, J. (2007). Assessment of the effectiveness of environmental dredging in South Lake, China. Environmental Management, 40(2), 314–322. https://doi.org/10.1007/s00267-006-0132-y.

    Article  Google Scholar 

  • Whitman, W.B., Coleman, D.C., Wiebe, W.J. (1998). Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences U. S. A., 95, 6578–6583.

  • Wilken, R.-D., Moreira, I., & Rebello, A. (1986). 210Pb and 137Cs fluxes in a sediment core from Guanabara Bay, Brazil. Science of the Total Environment, 58(1–2), 195–198. https://doi.org/10.1016/0048-9697(86)90088-4.

    Article  CAS  Google Scholar 

  • Zhang, R., Liu, B., Lau, S. C. K., Ki, J. S., & Qian, P. Y. (2007). Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiology Ecology, 61(3), 496–508. https://doi.org/10.1111/j.1574-6941.2007.00353.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to professors Mirian Crapez, Emmanoel Silva-Filho, Renato Cordeiro, and Micheli Ferreira from Universidade Federal Fluminense (UFF) for lab facilities.

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES/ Finance Code 001 and Programa de Doutorado Sanduíche no Exterior no. 88881.135581/2016-01) and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Universal n°449631/2014-1 and CNPq/PDJ no. 155406/2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana R. Nascimento.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, J.R., Easson, C.G., Jurelevicius, D.d.A. et al. Microbial community shift under exposure of dredged sediments from a eutrophic bay. Environ Monit Assess 192, 539 (2020). https://doi.org/10.1007/s10661-020-08507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08507-8

Keywords

Navigation