Skip to main content
Log in

Vibration analysis of coupled straight–curved beam systems with arbitrary discontinuities subjected to various harmonic forces

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a modified variational method is developed to study the free and forced vibration of coupled straight–curved beam systems with an arbitrary number of eccentric discontinuities (EDs). Based on the generalized shell theory, the kinetic and potential functional of the curved beam with arbitrary subtended angles is formulated. Since the shear and inertial (or radial–tangential–rotational coupling) effects are included for the curved beam, the longitudinal vibration is also introduced to the energy functional for a straight Timoshenko beam. Using corresponding coordinate transformations, the Lagrange multiplier method and least-square weighted residual method are employed to impose the continuity constraints on the internal interfaces and boundaries among the straight and curved beams. The proposed method allows a flexible choice of the admissible functions and can be used for various combinations of the straight and curved beams to model corresponding engineering structures. Concentrated forces, uniformly distributed loads and space-dependent loads are considered to demonstrate great efficiency and accuracy of the present approach for the forced as well as the free vibration of the coupled system. Most of the present results are compared with those from finite element program ANSYS, and good agreement is observed. Influences of the EDs on the dynamic responses of the coupled system are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hajianmaleki, M., Qatu, M.S.: Vibrations of straight and curved composite beams: a review. Compos. Struct. 100, 218–232 (2013)

    Article  Google Scholar 

  2. Zhang, Z., Huang, X., Zhang, Z., Hua, H.: On the transverse vibration of Timoshenko double-beam systems coupled with various discontinuities. Int. J. Mech. Sci. 89, 222–241 (2014)

    Article  Google Scholar 

  3. Mokhtari, A., Mirdamadi, H.R.: Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: non-transforming spectral element analysis. Appl. Math. Model. 56, 342–358 (2018)

    Article  MathSciNet  Google Scholar 

  4. Mei, C.: Studying the effects of lumped end mass on vibrations of a Timoshenko beam using a wave-based approach. J. Vib. Control 18(5), 733–742 (2012)

    Article  MathSciNet  Google Scholar 

  5. Lei, Z., Su, J., Hua, H.: Longitudinal and transverse coupling dynamic properties of a Timoshenko beam with mass eccentricity. Int. J. Struct. Stab. Dyn. 17(7), 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  6. Su, J., Lei, Z., Hua, H.: Axial-bending coupling vibration of mass eccentric double-beam system with discrete elastic connections. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 231(2), 555–568 (2017)

    Google Scholar 

  7. Rao, S.S., Sundararajan, V.: In-plane flexural vibrations of circular rings. J. Appl. Mech. ASME 36, 620–625 (1969)

    Article  Google Scholar 

  8. Huang, X., Hua, H., Wang, Y., Du, Z.: Research on wave mode conversion of curved beam structures by the wave approach. J. Vib. Acoust. 135(3), 031014 (2013)

    Article  Google Scholar 

  9. Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite-elements. J. Sound Vib. 31, 315–330 (1973)

    Article  Google Scholar 

  10. Raveendranath, P., Singh, G., Rao, G.V.: A three-node shear-flexible curved beam element based on coupled displacement field interpolations. Int. J. Numer. Methods Eng. 51, 85–101 (2001)

    Article  Google Scholar 

  11. Zhu, Z.H., Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1), 86–95 (2008)

    Article  Google Scholar 

  12. Yang, F., Sedaghati, R., Esmailzadeh, E.: Free in-plane vibration of general curved beams using finite element method. J. Sound Vib. 318(4), 850–867 (2008)

    Article  Google Scholar 

  13. Cannarozzi, M., Molari, L.: A mixed stress model for linear elastodynamics of arbitrarily curved beams. Int. J. Numer. Methods Eng. 74, 116–137 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kim, J.G., Park, Y.K.: Hybrid-mixed curved beam elements with increased degrees of freedom for static and vibration analyses. Int. J. Numer. Methods Eng. 68, 690–706 (2006)

    Article  Google Scholar 

  15. Kim, J.G., Lee, J.K.: Free-vibration analysis of arches based on the hybrid-mixed formulation with consistent quadratic stress functions. Comput. Struct. 86, 1672–1681 (2008)

    Article  Google Scholar 

  16. Luu, A.T., Kim, N.I., Lee, J.: Isogeometric vibration analysis of free-form Timoshenko curved beams. Meccanica 50(1), 169–187 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chen, C.N.: DQEM analysis of in-plane vibration of curved beam structures. Adv. Eng. Softw. 36(6), 412–424 (2005)

    Article  Google Scholar 

  18. He, X.T., Li, X., Li, W.M., Sun, J.Y.: Bending analysis of functionally graded curved beams with different properties in tension and compression. Arch. Appl. Mech. 89, 1973–1994 (2019)

    Article  Google Scholar 

  19. Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)

    Article  Google Scholar 

  20. Ebrahimi, F., Barati, M.R.: A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos. Struct. 159, 174–182 (2017)

    Article  Google Scholar 

  21. Ebrahimi, F., Barati, M.R.: Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(25), 4457–4469 (2017)

    Article  Google Scholar 

  22. Ebrahimi, F., Barati, M.R.: Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory. Mech. Adv. Mater. Struct. 25(4), 350–359 (2016)

    Article  Google Scholar 

  23. Ebrahimi, F., Barati, M.R., Mahesh, V.: Dynamic modeling of smart magneto-electro-elastic curved nanobeams. Adv. Nano Res. 7(3), 145 (2019)

    Google Scholar 

  24. Kang, B., Riedel, C.H., Tan, C.A.: Free vibration analysis of planar curved beams by wave propagation. J. Sound Vib. 260(1), 19–44 (2003)

    Article  Google Scholar 

  25. Kang, B., Riedel, C.H.: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes. Wave Motion 49(1), 1–23 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wu, J.S., Lin, F.T., Shaw, H.J.: Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Appl. Math. Model. 37(14), 7588–7610 (2013)

    Article  MathSciNet  Google Scholar 

  27. Arici, M., Granata, M.F., Margiotta, P.: Hamiltonian structural analysis of curved beams with or without generalized two-parameter foundation. Arch. Appl. Mech. 83(12), 1695–1714 (2013)

    Article  Google Scholar 

  28. Chouvion, B., Fox, C.H.J., Mcwilliam, S., Popov, A.A.: In-plane free vibration analysis of combined ring-beam structural systems by wave propagation. J. Sound Vib. 329(26), 5087–5104 (2010)

    Article  Google Scholar 

  29. Zhao, Y., Kang, H.: In-plane free vibration analysis of cable–arch structure. J. Sound Vib. 312(3), 363–379 (2008)

    Article  Google Scholar 

  30. Su, J., Zhou, K., Qu, Y., Hua, H.: A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements. Arch. Appl. Mech. 88(7), 1089–1104 (2018)

    Article  Google Scholar 

  31. Kim, J.G., Lee, J.K., Yoon, H.J.: On the effect of shear coefficients in free vibration analysis of curved beams. J. Mech. Sci. Technol. 28(8), 3181–3187 (2014)

    Article  Google Scholar 

  32. Magrab, E.B.: Vibrations of Elastic Systems: With Applications to MEMS and NEMS. Springer, Berlin (2012)

    Book  Google Scholar 

  33. Jeffery, A., Dai, H.H.: Handbook of Mathematical Formulas and Integrals, 4th edn. Academic Press, California (2008)

    Google Scholar 

  34. Fu, Z., Hua, H.: Modal Analysis Theory and Application. Shanghai Jiao Tong University Press, Shanghai (2000)

    Google Scholar 

  35. Qu, Y., Chen, Y., Long, X., Hua, H., Meng, G.: Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method. Appl. Acoust. 74(3), 425–439 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 51504121 and 51774161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Generalized mass and stiffness matrices of the coupled beam system

The disjoint generalized mass and stiffness matrices of the coupled straight–curved beam system are, respectively, assembled as

$$\begin{aligned} {\mathbf{M}}= & {} \hbox {diag}\left[ {{\begin{array}{*{20}c} {\underbrace{{\mathbf{M}}_{\mathrm{c,1}} ,{\mathbf{M}}_{\mathrm{c,}2} ,\ldots ,{\mathbf{M}}_{\mathrm{c,}N_{c} } }_{N_{c} \hbox { curved beam segments}},} {\underbrace{{\mathbf{M}}_{\mathrm{s,1}} ,{\mathbf{M}}_{\mathrm{s,}2} ,\ldots ,{\mathbf{M}}_{\mathrm{s,}N_{s} } }_{N_{s} \hbox { straight beam segments}},} {\underbrace{{\mathbf{M}}_{\mathrm{c,1}} ,{\mathbf{M}}_{\mathrm{c,}2} ,\ldots ,{\mathbf{M}}_{\mathrm{c,}N_{c} } }_{N_{c} \hbox { curved beam segments}},} {\underbrace{{\mathbf{M}}_{\mathrm{s,1}} ,{\mathbf{M}}_{\mathrm{s,}2} ,\ldots ,{\mathbf{M}}_{\mathrm{s,}N_{s} } }_{N_{s} \hbox { straight beam segments}}} \end{array} }} \right] \nonumber \\ \end{aligned}$$
(A.1)
$$\begin{aligned} {\mathbf{K}}= & {} \hbox {diag}\left[ {{\begin{array}{*{20}c} {\underbrace{{\mathbf{K}}_{\mathrm{c,1}} ,{\mathbf{K}}_{\mathrm{c,}2} ,\ldots ,{\mathbf{K}}_{\mathrm{c,}N_{c} } }_{N_{c} \hbox { curved beam segments}},} {\underbrace{{\mathbf{K}}_{\mathrm{s,1}} ,{\mathbf{K}}_{\mathrm{s,}2} ,\ldots ,{\mathbf{K}}_{\mathrm{s,}N_{s} } }_{N_{s} \hbox { straight beam segments}},} {\underbrace{{\mathbf{K}}_{\mathrm{c,1}} ,{\mathbf{K}}_{\mathrm{c,}2} ,\ldots ,{\mathbf{K}}_{\mathrm{c,}N_{c} } }_{N_{c} \hbox { curved beam segments}},} {\underbrace{{\mathbf{K}}_{\mathrm{s,1}} ,{\mathbf{K}}_{\mathrm{s,}2} ,\ldots ,{\mathbf{K}}_{\mathrm{s,}N_{s} } }_{N_{s} \hbox { straight beam segments}}} \end{array} }} \right] \nonumber \\ \end{aligned}$$
(A.2)

where \(\mathbf{M }_{c,i}\) and \(\mathbf{K }_{c,i}\) (\(i\in \left[ {1,N_{c} } \right] )\) are the disjoint generalized mass and stiffness matrices for the curved beam component, respectively. For more details, the readers may refer to Ref. [23]. The generalized mass and stiffness matrices of the ith straight beam segment can be given by

$$\begin{aligned} {\mathbf{M}}_{s}^{i}= & {} \int _{x_{i} } {\left[ {{\begin{array}{*{20}c} {{\mathbf{M}}_{uu}^{i} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{M}}_{ww}^{i} } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{M}}_{\varphi \varphi }^{i} } \\ \end{array} }} \right] \mathrm{d}x} \end{aligned}$$
(A.3)
$$\begin{aligned} {\mathbf{K}}_{s}^{i}= & {} \int _{x_{i} } {\left[ {{\begin{array}{*{20}c} {{\mathbf{K}}_{uu}^{i} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{K}}_{ww}^{i} } &{} {{\mathbf{K}}_{w\varphi }^{i} } \\ {{\mathbf{0}}} &{} {{\mathbf{K}}_{w\varphi }^{i,T} } &{} {{\mathbf{K}}_{\varphi \varphi }^{i} } \\ \end{array} }} \right] \mathrm{d}x} \end{aligned}$$
(A.4)

The elements of the mass matrices are:

$$\begin{aligned} {\mathbf{M}}_{uu}^{i}= & {} \rho _{si} A_{si} {\mathbf{U}}_{i}^{T} {\mathbf{U}}_{i} , \end{aligned}$$
(A.5a)
$$\begin{aligned} {\mathbf{M}}_{ww}^{i}= & {} \rho _{si} A_{si} {\mathbf{W}}_{i}^{T} {\mathbf{W}}_{i} , \end{aligned}$$
(A.5b)
$$\begin{aligned} {\mathbf{M}}_{\varphi \varphi }^{i}= & {} \rho _{si} I_{si} {\varvec{\Phi }}_{i}^{T} {\varvec{\Phi }}_{i} \end{aligned}$$
(A.5c)

The elements of the stiffness matrices are:

$$\begin{aligned} {\mathbf{K}}_{uu}^{i}= & {} E_{si} A_{si} \frac{\partial {\mathbf{U}}_{i}^{T} }{\partial x}\frac{\partial {\mathbf{U}}_{i} }{\partial x}, \end{aligned}$$
(A.6a)
$$\begin{aligned} {\mathbf{K}}_{ww}^{i}= & {} \kappa _{si} G_{si} A_{si} \frac{\partial {\mathbf{W}}_{i}^{T} }{\partial x}\frac{\partial {\mathbf{W}}_{i} }{\partial x} \end{aligned}$$
(A.6b)
$$\begin{aligned} {\mathbf{K}}_{w\varphi }^{i}= & {} -\kappa _{si} G_{si} A_{si} \frac{\partial {\mathbf{W}}_{i}^{T} }{\partial x}{\varvec{\Phi }}_{i} , \end{aligned}$$
(A.6c)
$$\begin{aligned} {\mathbf{K}}_{\varphi \varphi }^{i}= & {} E_{si} I_{si} \frac{\partial {\varvec{\Phi }}_{i}^{T} }{\partial x}\frac{\partial {\varvec{\Phi }}_{i} }{\partial x}+\kappa _{si} G_{si} A_{si} {\varvec{\Phi }}_{i}^{T} {\varvec{\Phi }}_{i} \end{aligned}$$
(A.6d)

According to the organization of the elements in the generalized displacement vector, assembling all interface matrices of the straight beam component leads to the generalized interface matrices \({\mathbf{K}}_{\lambda }^{s}\) and \({\mathbf{K}}_{\kappa }^{s}\) of the straight beam component. The interface matrix \({\mathbf{K}}_{\lambda }^{i}\) of the straight beam at the interface located at \(x=x_{i}\) is given by

$$\begin{aligned} {\mathbf{K}}_{\lambda }^{i} =\left[ {{\begin{array}{*{20}c} {{\mathbf{K}}_{u_{i} u_{i} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{K}}_{u_{i} u_{i+1} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{K}}_{w_{i} w_{i} } } &{} {{\mathbf{K}}_{w_{i} \varphi _{i} } } &{} {{\mathbf{0}}} &{} {{\mathbf{K}}_{w_{i} w_{i+1} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{K}}_{w_{i} \varphi _{i} }^{T} } &{} {{\mathbf{K}}_{\varphi _{i} \varphi _{i} } } &{} {{\mathbf{0}}} &{} {{\mathbf{K}}_{\varphi _{i} w_{i+1} } } &{} {{\mathbf{K}}_{\varphi _{i} \varphi _{i+1} } } \\ {{\mathbf{K}}_{u_{i} u_{i+1} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{K}}_{w_{i} w_{i+1} }^{T} } &{} {{\mathbf{K}}_{\varphi _{i} w_{i+1} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{K}}_{\varphi _{i} \varphi _{i+1} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ \end{array} }} \right] \end{aligned}$$
(A.7)

The detailed elements of the interface matrix \({\mathbf{K}}_{\lambda }^{i}\) are:

$$\begin{aligned} {\mathbf{K}}_{u_{i} u_{i} }= & {} E_{si} A_{si} \left( {\frac{\partial {\mathbf{U}}_{i}^{T} }{\partial x}{\mathbf{U}}_{i} +{\mathbf{U}}_{i}^{T} \frac{\partial {\mathbf{U}}_{i} }{\partial x}} \right) , \end{aligned}$$
(A.8a)
$$\begin{aligned} {\mathbf{K}}_{u_{i} u_{i+1} }= & {} -E_{si} A_{si} \frac{\partial {\mathbf{U}}_{i}^{T} }{\partial x}{\mathbf{U}}_{i+1} \end{aligned}$$
(A.8b)
$$\begin{aligned} {\mathbf{K}}_{w_{i} w_{i} }= & {} \kappa _{si} G_{si} A_{si} \left( {\frac{\partial {\mathbf{W}}_{i}^{T} }{\partial x}{\mathbf{W}}_{i} +{\mathbf{W}}_{i}^{T} \frac{\partial {\mathbf{W}}_{i} }{\partial x}} \right) , \end{aligned}$$
(A.8c)
$$\begin{aligned} {\mathbf{K}}_{w_{i} \varphi _{i} }= & {} -\kappa _{si} G_{si} A_{si} {\mathbf{W}}_{i}^{T} {\varvec{\Phi }}_{i} \end{aligned}$$
(A.8d)
$$\begin{aligned} {\mathbf{K}}_{w_{i} w_{i+1} }= & {} -\kappa _{si} G_{si} A_{si} \frac{\partial {\mathbf{W}}_{i}^{T} }{\partial x}{\mathbf{W}}_{i+1} , \end{aligned}$$
(A.8e)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{i} \varphi _{i} }= & {} E_{si} I_{si} \left( {\frac{\partial {\varvec{\Phi }}_{i}^{T} }{\partial x}{\varvec{\Phi }}_{i} +{\varvec{\Phi }}_{i}^{T} \frac{\partial {\varvec{\Phi }}_{i} }{\partial x}} \right) \end{aligned}$$
(A.8f)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{i} w_{i+1} }= & {} \kappa _{si} G_{si} A_{si} {\varvec{\Phi }}_{i}^{T} {\mathbf{W}}_{i+1} , \end{aligned}$$
(A.8g)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{i} \varphi _{i+1} }= & {} -E_{si} I_{si} \frac{\partial {\varvec{\Phi }}_{i}^{T} }{\partial x}{\varvec{\Phi }}_{i+1} \end{aligned}$$
(A.8h)

The generalized matrix \({\mathbf{K}}_{\kappa }^{i}\) due to the least-square weighted terms at the interface located at \(x=x_{i}\) is given below

$$\begin{aligned} {\mathbf{K}}_{\kappa }^{i} =\left[ {{\begin{array}{*{20}c} {{{\bar{\mathbf{K}}}}_{u_{i} u_{i} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{u_{i} u_{i+1} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{w_{i} w_{i} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{w_{i} w_{i+1} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{i} \varphi _{i} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{i} \varphi _{i+1} } } \\ {{{\bar{\mathbf{K}}}}_{u_{i} u_{i+1} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{u_{i+1} u_{i+1} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{w_{i} w_{i+1} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{w_{i+1} w_{i+1} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{i} \varphi _{i+1} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{i+1} \varphi _{i+1} } } \\ \end{array} }} \right] \end{aligned}$$
(A.9)

where the detailed elements are obtained by

$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{i} u_{i} }= & {} \kappa _{su} {\mathbf{U}}_{i}^{T} {\mathbf{U}}_{i} , \end{aligned}$$
(A.10a)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{i} u_{i+1} }= & {} -\kappa _{su} {\mathbf{U}}_{i}^{T} {\mathbf{U}}_{i+1} , \end{aligned}$$
(A.10b)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{i+1} u_{i+1} }= & {} -\kappa _{su} {\mathbf{U}}_{i+1}^{T} {\mathbf{U}}_{i+1} \end{aligned}$$
(A.10c)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{w_{i} w_{i} }= & {} \kappa _{sw} {\mathbf{W}}_{i}^{T} {\mathbf{W}}_{i} , \end{aligned}$$
(A.10d)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{w_{i} w_{i+1} }= & {} -\kappa _{sw} {\mathbf{W}}_{i}^{T} {\mathbf{W}}_{i+1} , \end{aligned}$$
(A.10e)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{w_{i+1} w_{i+1} }= & {} -\kappa _{sw} {\mathbf{W}}_{i+1}^{T} {\mathbf{W}}_{i+1} \end{aligned}$$
(A.10f)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{\varphi _{i} \varphi _{i} }= & {} \kappa _{s\varphi } {\varvec{\Phi }}_{i}^{T} {\varvec{\Phi }}_{i} , \end{aligned}$$
(A.10g)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{i} \varphi _{i+1} }= & {} -\kappa _{s\varphi } {\varvec{\Phi }}_{i}^{T} {\varvec{\Phi }}_{i+1} , \end{aligned}$$
(A.10h)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{i+1} \varphi _{i+1} }= & {} -\kappa _{s\varphi } {\varvec{\Phi }}_{i+1}^{T} {\varvec{\Phi }}_{i+1} \end{aligned}$$
(A.10i)

Appendix B: Generalized interface stiffness matrices at the joints of the straight and curved beam components

The interface matrix \({\mathbf{K}}_{\lambda }^{s,c} \) at the interface between the straight and curved beam is expressed as

$$\begin{aligned} {\mathbf{K}}_{\lambda }^{s,c} =\left[ {{\begin{array}{*{20}c} {{\mathbf{K}}_{u_{s} u_{s} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{K}}_{u_{s} u_{c} } } &{} {{\mathbf{K}}_{u_{s} w_{c} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{K}}_{w_{s} w_{s} } } &{} {{\mathbf{K}}_{w_{s} \varphi _{s} } } &{} {{\mathbf{K}}_{w_{s} u_{c} } } &{} {{\mathbf{K}}_{w_{s} w_{c} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{K}}_{w_{s} \varphi _{s} }^{T} } &{} {{\mathbf{K}}_{\varphi _{s} \varphi _{s} } } &{} {{\mathbf{K}}_{\varphi _{s} u_{c} } } &{} {{\mathbf{K}}_{\varphi _{s} w_{c} } } &{} {{\mathbf{K}}_{\varphi _{s} \varphi _{c} } } \\ {{\mathbf{K}}_{u_{s} u_{c} }^{T} } &{} {{\mathbf{K}}_{w_{s} u_{c} }^{T} } &{} {{\mathbf{K}}_{\varphi _{s} u_{c} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{K}}_{u_{s} w_{c} }^{T} } &{} {{\mathbf{K}}_{w_{s} w_{c} }^{T} } &{} {{\mathbf{K}}_{\varphi _{s} w_{c} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{K}}_{\varphi _{s} \varphi _{c} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} \\ \end{array} }} \right] \end{aligned}$$
(B.1)

The detailed elements of the interface matrix \({\mathbf{K}}_{\lambda }^{i}\) are:

$$\begin{aligned} {\mathbf{K}}_{u_{s} u_{s} }= & {} E_{s} A_{s} \left( {\frac{\partial {\mathbf{U}}_{s}^{T} }{\partial x}{\mathbf{U}}_{s} +{\mathbf{U}}_{s}^{T} \frac{\partial {\mathbf{U}}_{s} }{\partial x}} \right) , \end{aligned}$$
(B.2a)
$$\begin{aligned} {\mathbf{K}}_{u_{s} u_{c} }= & {} -a_{11} E_{s} A_{s} \sin \left( {\frac{\alpha }{2}} \right) \frac{\partial {\mathbf{U}}_{s}^{T} }{\partial x}{\mathbf{U}}_{c} \end{aligned}$$
(B.2b)
$$\begin{aligned} {\mathbf{K}}_{u_{s} w_{c} }= & {} -a_{12} E_{s} A_{s} \cos \left( {\frac{\alpha }{2}} \right) \frac{\partial {\mathbf{U}}_{s}^{T} }{\partial x}{\mathbf{W}}_{c} , \end{aligned}$$
(B.2c)
$$\begin{aligned} {\mathbf{K}}_{w_{s} w_{s} }= & {} \kappa _{s} G_{s} A_{s} \left( {\frac{\partial {\mathbf{W}}_{s}^{T} }{\partial x}{\mathbf{W}}_{s} +{\mathbf{W}}_{s}^{T} \frac{\partial {\mathbf{W}}_{s} }{\partial x}} \right) \end{aligned}$$
(B.2d)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{s} u_{c} }= & {} a_{21} \kappa _{s} G_{s} A_{s} \cos \left( {\frac{\alpha }{2}} \right) {\varvec{\Phi }}_{s}^{T} {\mathbf{U}}_{c} , \end{aligned}$$
(B.2e)
$$\begin{aligned} {\mathbf{K}}_{w_{s} u_{c} }= & {} -a_{21} \kappa _{s} G_{s} A_{s} \cos \left( {\frac{\alpha }{2}} \right) \frac{\partial {\mathbf{W}}_{s}^{T} }{\partial x}{\mathbf{U}}_{c} \end{aligned}$$
(B.2f)
$$\begin{aligned} {\mathbf{K}}_{w_{s} w_{c} }= & {} -a_{22} \kappa _{s} G_{s} A_{s} \sin \left( {\frac{\alpha }{2}} \right) \frac{\partial {\mathbf{W}}_{i}^{T} }{\partial x}{\mathbf{W}}_{i+1} \end{aligned}$$
(B.2g)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{s} \varphi _{s} }= & {} E_{s} I_{s} \left( {\frac{\partial {\varvec{\Phi }}_{s}^{T} }{\partial x}{\varvec{\Phi }}_{s} +{\varvec{\Phi }}_{s}^{T} \frac{\partial {\varvec{\Phi }}_{s} }{\partial x}} \right) \end{aligned}$$
(B.2h)
$$\begin{aligned} {\mathbf{K}}_{w_{s} \varphi _{s} }= & {} -\kappa _{s} G_{s} A_{s} {\mathbf{W}}_{s}^{T} {\varvec{\Phi }}_{s} , \end{aligned}$$
(B.2i)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{s} w_{c} }= & {} a_{22} \kappa _{s} G_{s} A_{s} \sin \left( {\frac{\alpha }{2}} \right) {\varvec{\Phi }}_{s}^{T} {\mathbf{W}}_{i+1} , \end{aligned}$$
(B.2j)
$$\begin{aligned} {\mathbf{K}}_{\varphi _{s} \varphi _{c} }= & {} -E_{s} I_{s} \frac{\partial {\varvec{\Phi }}_{s}^{T} }{\partial x}{\varvec{\Phi }}_{c} \end{aligned}$$
(B.2k)

The generalized matrix \({\mathbf{K}}_{\kappa }^{s,c}\) due to the least-square weighted terms at the interface between the straight and curved beam is given below

$$\begin{aligned} {\mathbf{K}}_{\kappa }^{s,c} =\left[ {{\begin{array}{*{20}c} {{{\bar{\mathbf{K}}}}_{u_{s} u_{s} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{u_{s} u_{c} } } &{} {{{\bar{\mathbf{K}}}}_{u_{s} w_{c} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{w_{s} w_{s} } } &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{w_{s} u_{c} } } &{} {{{\bar{\mathbf{K}}}}_{w_{s} w_{c} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{s} \varphi _{s} } } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{s} \varphi _{c} } } \\ {{{\bar{\mathbf{K}}}}_{u_{s} u_{c} }^{T} } &{} {{{\bar{\mathbf{K}}}}_{w_{s} u_{c} }^{T} } &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{u_{c} u_{c} } } &{} {{{\bar{\mathbf{K}}}}_{u_{c} w_{c} } } &{} {{\mathbf{0}}} \\ {{{\bar{\mathbf{K}}}}_{u_{s} w_{c} }^{T} } &{} {{{\bar{\mathbf{K}}}}_{w_{s} w_{c} }^{T} } &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{u_{c} w_{c} }^{T} } &{} {{{\bar{\mathbf{K}}}}_{w_{c} w_{c} } } &{} {{\mathbf{0}}} \\ {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{s} \varphi _{c} }^{T} } &{} {{\mathbf{0}}} &{} {{\mathbf{0}}} &{} {{{\bar{\mathbf{K}}}}_{\varphi _{c} \varphi _{c} } } \\ \end{array} }} \right] \end{aligned}$$
(B.3)

where the detailed elements are obtained by

$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{s} u_{s} }= & {} \kappa _{u} {\mathbf{U}}_{s}^{T} {\mathbf{U}}_{s} , \end{aligned}$$
(B.4a)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{s} u_{c} }= & {} -\kappa _{u} a_{11} \sin \left( {\frac{\alpha }{2}} \right) {\mathbf{U}}_{s}^{T} {\mathbf{U}}_{c} , \end{aligned}$$
(B.4b)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{s} w_{c} }= & {} -\kappa _{u} a_{12} \cos \left( {\frac{\alpha }{2}} \right) {\mathbf{U}}_{s}^{T} {\mathbf{W}}_{c} \end{aligned}$$
(B.4c)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{w_{s} w_{s} }= & {} \kappa _{w} {\mathbf{W}}_{s}^{T} {\mathbf{W}}_{s} , \end{aligned}$$
(B.4d)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{w_{s} u_{c} }= & {} -\kappa _{w} a_{21} \cos \left( {\frac{\alpha }{2}} \right) {\mathbf{W}}_{s}^{T} {\mathbf{U}}_{c} , \end{aligned}$$
(B.4e)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{w_{s} w_{c} }= & {} -\kappa _{w} a_{ww} \sin \left( {\frac{\alpha }{2}} \right) {\mathbf{W}}_{s}^{T} {\mathbf{W}}_{c} \end{aligned}$$
(B.4f)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{\varphi _{s} \varphi _{s} }= & {} \kappa _{\varphi } {\varvec{\Phi }}_{s}^{T} {\varvec{\Phi }}_{s} , \end{aligned}$$
(B.4g)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{\varphi _{s} \varphi _{c} }= & {} -\kappa _{\varphi } {\varvec{\Phi }}_{s}^{T} {\varvec{\Phi }}_{c} , \end{aligned}$$
(B.4h)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{\varphi _{c} \varphi _{c} }= & {} -\kappa _{\varphi } {\varvec{\Phi }}_{c}^{T} {\varvec{\Phi }}_{c} \end{aligned}$$
(B.4i)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{c} u_{c} }= & {} \left( {\kappa _{u} a_{11}^{2} \sin ^{2}\left( {\frac{\alpha }{2}} \right) +\kappa _{w} a_{21}^{2} \cos ^{2}\left( {\frac{\alpha }{2}} \right) } \right) {\mathbf{U}}_{c}^{T} {\mathbf{U}}_{c} \end{aligned}$$
(B.4j)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{u_{c} w_{c} }= & {} \left( {\kappa _{u} a_{11} a_{12} +\kappa _{w} a_{21} a_{22} } \right) \sin \left( {\frac{\alpha }{2}} \right) \cos \left( {\frac{\alpha }{2}} \right) {\mathbf{U}}_{c}^{T} {\mathbf{W}}_{c} \end{aligned}$$
(B.4k)
$$\begin{aligned} {{\bar{\mathbf{K}}}}_{w_{c} w_{c} }= & {} \left( {\kappa _{w} a_{22}^{2} \sin ^{2}\left( {\frac{\alpha }{2}} \right) +\kappa _{u} a_{12}^{2} \cos ^{2}\left( {\frac{\alpha }{2}} \right) } \right) {\mathbf{W}}_{c}^{T} {\mathbf{W}}_{c} \end{aligned}$$
(B.4l)

For the generalized mass and stiffness matrices of EDs, the readers may refer to Ref. [23]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhang, K., Zhang, Q. et al. Vibration analysis of coupled straight–curved beam systems with arbitrary discontinuities subjected to various harmonic forces. Arch Appl Mech 90, 2071–2090 (2020). https://doi.org/10.1007/s00419-020-01709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01709-z

Keywords

Navigation