Skip to main content

Advertisement

Log in

Size-dependent buckling analysis of Euler–Bernoulli nanobeam under non-uniform concentration

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Nano-sized batteries composed of nanostructured electrode materials stand as one of the most promising candidates for next-generation rechargeable charging devices which have been widely used in the energy storage systems for advanced power applications. Buckling analysis of nanobeam under non-uniform concentration is significantly important for the design of nano-sized batteries under the rapid charging mode. In this work, such issue is investigated in the framework of the size-dependent mechanical–diffusion model, and size effect of mass transfer on buckling property is considered for the first time. By using the eigenvalue method, the critical buckling loads of Euler–Bernoulli nanobeam under the conditions of clamped–clamped, clamped–free, simply supported–simply supported and clamped–simply supported are analytically obtained. The derived results are compared with those of non-gradient nonlocal elastic stress theory, classical elasticity theory and classical theory of mass transfer. It is also found that the value of critical buckling load will be reduced if diffusive nonlocal parameter becomes larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fang, X.Q., Liu, J.X., Gupta, V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716–1726 (2013)

    Article  Google Scholar 

  2. Nami, M.R., Janghorban, M.: Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant. Compos. Struct. 111, 349–353 (2014)

    Article  Google Scholar 

  3. Manthiram, A., Vadivel Murugan, A., Sarkar, A., Muraliganth, T.: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621–638 (2008)

    Article  Google Scholar 

  4. Kim, M.G., Cho, J.: Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 19, 1497–1514 (2010)

    Article  Google Scholar 

  5. Guan, B.Y., Yu, X.Y., Wu, H.B., Lou, X.W.D.: Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29, 1703614 (2017)

    Article  Google Scholar 

  6. Yang, F.Q.: Interaction between diffusion and chemical stresses. Mat. Sci. Eng. A Struct. 409, 153–159 (2005)

    Article  Google Scholar 

  7. Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876–1881 (1961)

    Article  Google Scholar 

  8. Khanchehgardan, A., Rezazadeh, G., Shabani, R.: Effect of mass diffusion on the damping ratio in micro-beam resonators. Int. J. Solids Struct. 51, 3147–3155 (2014)

    Article  Google Scholar 

  9. Le, T.D., Lasseux, D., Nguyen, X.P., Vignoles, G., Mano, N., Kuhn, A.: Multi-scale modeling of diffusion and electrochemical reactions in porous micro-electrodes. Chem. Eng. Sci. 173, 153–167 (2017)

    Article  Google Scholar 

  10. Yang, F.Q.: Diffusion-induced bending of viscoelastic beams. Int. J. Mech. Sci. 131, 137–145 (2017)

    Article  Google Scholar 

  11. Suo, Y.H., Shen, S.P.: Dynamical theoretical model and variational principles for coupled temperature–diffusion–mechanics. Acta Mech. 223, 29–41 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kuang, Z.B.: Energy and entropy equations in coupled nonequilibrium thermal mechanical diffusive chemical heterogeneous system. Sci. Bull. 60, 952–957 (2015)

    Article  Google Scholar 

  13. Bhandakkar, T.K., Johnson, H.T.: Diffusion induced stresses in buckling battery electrodes. J. Mech. Phys. Solids 60, 1103–1121 (2012)

    Article  MathSciNet  Google Scholar 

  14. Sobolev, S.L.: Nonlocal diffusion models: application to rapid solidification of binary mixtures. Int. J. Heat Mass Transf. 71, 295–302 (2014)

    Article  Google Scholar 

  15. Wang, G.X., Prasad, V.: Microscale heat and mass transfer and non-equilibrium phase change in rapid solidification. Mater. Sci. Eng. A 292, 142–148 (2000)

    Article  Google Scholar 

  16. Sobolev, S.L.: Equations of transfer in non-local media. Int. J. Heat Mass Transf. 37, 2175–2182 (1994)

    Article  Google Scholar 

  17. Asta, M., Beckermann, C., Karma, A., Kurz, W., Napolitano, R., Plapp, M., Purdy, G., Rappaz, M., Trivedi, R.: Solidification microstructures and solid-state parallels: recent developments. future directions. Acta Mater. 57, 941–971 (2009)

    Article  Google Scholar 

  18. Sobolev, S.L.: Rapid colloidal solidifications under local nonequilibrium diffusion conditions. Phys. Lett. A 376, 3563–3566 (2012)

    Article  Google Scholar 

  19. Salvadori, M.C., Brown, I.G., Vaz, A.R., Melo, L.L., Cattani, M.: Measurement of the elastic modulus of nanostructured gold and platinum thin films. Phys. Rev. B 67, 153404 (2003)

    Article  Google Scholar 

  20. Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  Google Scholar 

  21. Cuenot, S., Demoustier-Champagne, S., Nysten, B.: Elastic modulus of polypyrrole nanotubes. Phys. Rev. Lett. 85, 1690 (2000)

    Article  Google Scholar 

  22. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  23. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of place waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  Google Scholar 

  24. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  25. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  26. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  Google Scholar 

  27. Thai, H.T.: A nonlocal beam theory for bending, buckling and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  28. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  Google Scholar 

  29. Li, L., Hu, Y.J.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  Google Scholar 

  30. Yue, Y.M., Xu, K.Y., Tan, Z.Q., Wang, W.J., Wang, D.: The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate. Arch. Appl. Mech. 89, 1301–1315 (2019)

    Article  Google Scholar 

  31. Barretta, R., Ali Faghidian, S., de Sciarra, F.M., Vaccaro, M.S.: Nonlocal strain gradient torsion of elastic beams: variational formulation and constitutive boundary conditions. Arch. Appl. Mech. 90, 691–706 (2020)

    Article  Google Scholar 

  32. Zhu, X.W., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 178, 87–96 (2017)

    Article  Google Scholar 

  33. Romano, G., Barretta, R., Diaco, M., de Sciarra, F.M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  34. Zhu, X.W., Li, L.: A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect. Appl. Math. Mech. 40, 1561–1588 (2019)

    Article  MathSciNet  Google Scholar 

  35. Shen, H.S., Xu, Y.M., Zhang, C.L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Methods Appl. Mech. Eng. 267, 458–470 (2013)

    Article  MathSciNet  Google Scholar 

  36. Li, C.L., Guo, H.L., Tian, X.G., He, T.H.: Nonlocal diffusion–elasticity based on nonlocal mass transfer and nonlocal elasticity and its application in shock-induced responses analysis. Mech. Adv. Mater. Struct. 1–21 (2019)

  37. Guo, H.L., He, T.H., Tian, X.G., Shang, F.L.: Size-dependent mechanical–diffusion responses of multilayered composite nanoplates. Wave Random Complex 1–30 (2020)

  38. Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  39. Ghannadpour, S.A.M., Mohammadi, B., Fazilati, J.: Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos. Struct. 96, 584–589 (2013)

    Article  Google Scholar 

  40. Hosseini-Hashemi, S., Kermajani, M., Nazemnezhad, R.: An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal thirdorder shear deformation plate theory. Eur. J. Mech. A Solids 51, 29–43 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zhang, K., Li, Y., Zheng, B.L., Wu, G.P., Wu, J.S., Yang, F.Q.: Large deformation analysis of diffusion-induced buckling of nanowires in lithium-ion batteries. Int. J. Solids Struct. 108, 230–242 (2017)

    Article  Google Scholar 

  42. Tan, K.H., Yuan, W.F.: Buckling of elastically restrained steel columns under longitudinal non-uniform temperature distribution. J. Constr. Steel Res. 64, 51–61 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11572237, 11372123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenlin Li.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Tian, X. & He, T. Size-dependent buckling analysis of Euler–Bernoulli nanobeam under non-uniform concentration. Arch Appl Mech 90, 1845–1860 (2020). https://doi.org/10.1007/s00419-020-01700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01700-8

Keywords

Navigation