Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Recent Advances in β-lactam Derivatives as Potential Anticancer Agents

Author(s): Xinfen Zhang and Yanshu Jia*

Volume 20, Issue 16, 2020

Page: [1468 - 1480] Pages: 13

DOI: 10.2174/1568026620666200309161444

Price: $65

Abstract

Cancer, accounts for around 10 million deaths annually, is the second leading cause of death globally. The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents are the main challenges in the control and eradication of cancers, so it is imperative to develop novel anticancer agents. Immense efforts have been made in developing new lead compounds and novel chemotherapeutic strategies for the treatment of various forms of cancers in recent years. β-Lactam derivatives constitute versatile and attractive scaffolds for the drug discovery since these kinds of compounds possess a variety of pharmacological properties, and some of them exhibited promising potency against both drug-sensitive and drug-resistant cancer cell lines. Thus, β-lactam moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of β-lactam derivatives with the potential therapeutic application for the treatment of cancers covering articles published between 2000 and 2020. The mechanisms of action, the critical aspects of design and structureactivity relationships are also discussed.

Keywords: β-lactam, Hybrid compounds, Anticancer, Drug-resistant, Structure-activity relationship, Cancer cell lines.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Strongman, H.; Gadd, S.; Matthews, A.; Mansfield, K.E.; Stanway, S.; Lyon, A.R.; Dos-Santos-Silva, I.; Smeeth, L.; Bhaskaran, K. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet, 2019, 394(10203), 1041-1054.
[http://dx.doi.org/10.1016/S0140-6736(19)31674-5] [PMID: 31443926]
[4]
Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond), 2019, 39(1), 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[6]
American Association for Cancer Research. Cancer progress report. Available from:. http://www.cancerprogressreport.org/ (Accessed 2019).
[7]
World Health Organization. Cancer prevention. Available from:. https://www.who.int/cancer/prevention/en/.
[8]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[9]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[10]
Chatterjee, N.; Bivona, T.G. Polytherapy and targeted cancer drug resistance. Trends Cancer, 2019, 5(3), 170-182.
[http://dx.doi.org/10.1016/j.trecan.2019.02.003] [PMID: 30898264]
[11]
Decuyper, L.; Jukič, M.; Sosič, I.; Žula, A.; D’hooghe, M.; Gobec, S. Antibacterial and β-lactamase inhibitory activity of monocyclic β-lactams. Med. Res. Rev., 2018, 38(2), 426-503.
[http://dx.doi.org/10.1002/med.21443] [PMID: 28815732]
[12]
Bush, K.; Macielag, M.J. New β-lactam antibiotics and β-lactamase inhibitors. Expert Opin. Ther. Pat., 2010, 20(10), 1277-1293.
[http://dx.doi.org/10.1517/13543776.2010.515588] [PMID: 20839927]
[13]
Jarrahpour, A.; Aye, M.; Rad, J.A.; Yousefinejad, S.; Sinou, V.; Latour, C.; Brunel, J.M. Design, synthesis, activity evaluation and QSAR studies of novel antimalarial 1,2,3-triazolo-β-lactam derivatives. J. Iran. Chem. Soc., 2018, 15, 1311-1326.
[http://dx.doi.org/10.1007/s13738-018-1330-2]
[14]
Rad, J.A.; Jarrahpour, A.; Latour, C.; Sinou, V.; Brunel, J.M.; Zgou, H.; Mabkhot, Y.; Hadda, T.B.; Turos, E. Synthesis and antimicrobial/antimalarial activities of novel naphthalimido trans-β-lactam derivatives. Med. Chem. Res., 2017, 26, 2235-2242.
[http://dx.doi.org/10.1007/s00044-017-1920-z]
[15]
Jarrahpour, A.; Eskandari, M.; Zomorodian, K.; Barati, E.; Ashori, R.; Vaziri, M.S.; Pakshir, K. Synthesis of some new monocyclic β-lactams bearing a morpholine moiety at their N1 positions as antifungal agents. Antiinfect. Agents Med. Chem., 2010, 9, 205-219.
[http://dx.doi.org/10.2174/187152110794785040]
[16]
O’Driscoll, M.; Greenhalgh, K.; Young, A.; Turos, E.; Dickey, S.; Lim, D.V. Studies on the antifungal properties of N-thiolated β-lactams. Bioorg. Med. Chem., 2008, 16(16), 7832-7837.
[http://dx.doi.org/10.1016/j.bmc.2008.06.035] [PMID: 18672374]
[17]
D’hooghe, M.; Mollet, K.; De Vreese, R.; Jonckers, T.H.M.; Dams, G.; De Kimpe, N. Design, synthesis, and antiviral evaluation of purine-β-lactam and purine-aminopropanol hybrids. J. Med. Chem., 2012, 55(11), 5637-5641.
[http://dx.doi.org/10.1021/jm300383k] [PMID: 22519297]
[18]
Dang, Q.; Zhang, Z.B.; Bai, Y.F.; Sun, R.J.; Yin, J.; Chen, T.Q.; Bogen, S.; Girijavallabhan, V.; Olsen, D.B.; Meinke, P.T. Syntheses of nucleosides with a 1′,2′-β-lactam moiety as potential inhibitors of hepatitis C virus NS5B polymerase. Trteahedron Lett., 2014, 55, 5576-5579.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.072]
[19]
Cebeci, Y.U.; Bayrak, H.; Şirin, Y. Synthesis of novel Schiff bases and azol-β-lactam derivatives starting from morpholine and thiomorpholine and investigation of their antitubercular, antiurease activity, acethylcolinesterase inhibition effect and antioxidant capacity. Bioorg. Chem., 2019, 88, 102928
[http://dx.doi.org/10.1016/j.bioorg.2019.102928] [PMID: 31005785]
[20]
Luna-Herrera, J.; Lara-Ramirez, E.E.; Munoz-Duarte, A.R.; Olazaran, F.E.; Chan-Bacab, M.J.; Moo-Puc, R.; Perez-Vazquez, A.M.; Morales-Reyes, C.M.; Rivera, G. In vitro and in silico analysis of β-lactam derivatives as antimycobacterial agents. Lett. Drug Des. Discov., 2017, 14, 782-786.
[http://dx.doi.org/10.2174/1570180814666170106111316]
[21]
Gupta, A. β-lactams: A mini review of their biological activity. Int. J. Pharm. Sci. Res., 2015, 6, 978-987.
[22]
Galletti, P.; Giacomini, D. Monocyclic β-lactams: new structures for new biological activities. Curr. Med. Chem., 2011, 18(28), 4265-4283.
[http://dx.doi.org/10.2174/092986711797200480] [PMID: 21861821]
[23]
Singh, G.S. β-lactams in the new millennium. Part-I: monobactams and carbapenems. Mini Rev. Med. Chem., 2004, 4(1), 69-92.
[http://dx.doi.org/10.2174/1389557043487501] [PMID: 14754445]
[24]
Singh, G.S. β-lactams in the new millennium. Part-II: cephems, oxacephems, penams and sulbactam. Mini Rev. Med. Chem., 2004, 4(1), 93-109.
[http://dx.doi.org/10.2174/1389557043487547] [PMID: 14754446]
[25]
Kuhn, D.; Coates, C.; Daniel, K.; Chen, D.; Bhuiyan, M.; Kazi, A.; Turos, E.; Dou, Q.P. Beta-lactams and their potential use as novel anticancer chemotherapeutics drugs. Front. Biosci., 2004, 9, 2605-2617.
[http://dx.doi.org/10.2741/1420] [PMID: 15358584]
[26]
Balderas-Renteria, I.; Gonzalez-Barranco, P.; Garcia, A.; Banik, B.K.; Rivera, G. Anticancer drug design using scaffolds of β-lactams, sulfonamides, quinoline, quinoxaline and natural products. Drugs advances in clinical trials. Curr. Med. Chem., 2012, 19(26), 4377-4398.
[http://dx.doi.org/10.2174/092986712803251593] [PMID: 22709002]
[27]
Veinberg, G.; Vorona, M.; Shestakova, I.; Kanepe, I.; Lukevics, E. Design of β-lactams with mechanism based nonantibacterial activities. Curr. Med. Chem., 2003, 10(17), 1741-1757.
[http://dx.doi.org/10.2174/0929867033457089] [PMID: 12871119]
[28]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[29]
Shaveta, ; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[30]
Arora, S.; Gonzalez, A.F.; Solanki, K. Combretastatin A-4 and its analogs in cancer therapy. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 168-174.
[31]
Seddigi, Z.S.; Malik, M.S.; Saraswati, A.P.; Ahmed, S.A.; Babalghith, A.O.; Lamfon, H.A.; Kamal, A. Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. MedChemComm, 2017, 8(8), 1592-1603.
[http://dx.doi.org/10.1039/C7MD00227K] [PMID: 30108870]
[32]
Rajak, H.; Dewangan, P.K.; Patel, V.; Jain, D.K.; Singh, A.; Veerasamy, R.; Sharma, P.C.; Dixit, A. Design of combretastatin A-4 analogs as tubulin targeted vascular disrupting agent with special emphasis on their cis-restricted isomers. Curr. Pharm. Des., 2013, 19(10), 1923-1955.
[http://dx.doi.org/10.2174/1381612811319100013] [PMID: 23237054]
[33]
Giacomini, E.; Rupiani, S.; Guidotti, L.; Recanatini, M.; Roberti, M. The use of stilbene scaffold in medicinal chemistry and multi-target drug design. Curr. Med. Chem., 2016, 23(23), 2439-2489.
[http://dx.doi.org/10.2174/0929867323666160517121629] [PMID: 27183980]
[34]
Singh, R.; Kaur, H. Advances in synthetic approaches for the preparation of combretastatin-based anti-cancer agents. Synth., 2009, 15, 2471-2491.
[http://dx.doi.org/10.1055/s-0029-1216891]
[35]
Chaudhary, A.; Pandeya, S.N.; Kumar, P.; Sharma, P.P.; Gupta, S.; Soni, N.; Verma, K.K.; Bhardwaj, G. Combretastatin a-4 analogs as anticancer agents. Mini Rev. Med. Chem., 2007, 7(12), 1186-1205.
[http://dx.doi.org/10.2174/138955707782795647] [PMID: 18220974]
[36]
Zhou, P.; Liu, Y.; Zhou, L.; Zhu, K.; Feng, K.; Zhang, H.; Liang, Y.; Jiang, H.; Luo, C.; Liu, M.; Wang, Y. Potent antitumor activities and structure basis of the chiral β-lactam bridged analogue of combretastatin A-4 binding to tubulin. J. Med. Chem., 2016, 59(22), 10329-10334.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01268] [PMID: 27805821]
[37]
Zhou, P.; Liang, Y.; Zhang, H.; Jiang, H.; Feng, K.; Xu, P.; Wang, J.; Wang, X.; Ding, K.; Luo, C.; Liu, M.; Wang, Y. Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. Eur. J. Med. Chem., 2018, 144, 817-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.004] [PMID: 29306206]
[38]
Carr, M.; Greene, L.M.; Knox, A.J.S.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Lead identification of conformationally restricted β-lactam type combretastatin analogues: synthesis, antiproliferative activity and tubulin targeting effects. Eur. J. Med. Chem., 2010, 45(12), 5752-5766.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.033] [PMID: 20933304]
[39]
Feng, K.C.; Liang, Y.R.; Zhou, P.F.; Liu, M.M.; Wang, Y. Structural modification and inhibitory activity on tumor cell proliferation of novel diaryl-β-lactam compounds as tubulin aggregation inhibitors. Youji Huaxue, 2017, 37, 683-690.
[http://dx.doi.org/10.6023/cjoc201610023]
[40]
Sun, L.; Vasilevich, N.I.; Fuselier, J.A.; Hocart, S.J.; Coy, D.H. Examination of the 1,4-disubstituted azetidinone ring system as a template for combretastatin A-4 conformationally restricted analogue design. Bioorg. Med. Chem. Lett., 2004, 14(9), 2041-2046.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.050] [PMID: 15080975]
[41]
Tripodi, F.; Pagliarin, R.; Fumagalli, G.; Bigi, A.; Fusi, P.; Orsini, F.; Frattini, M.; Coccetti, P. Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis. J. Med. Chem., 2012, 55(5), 2112-2124.
[http://dx.doi.org/10.1021/jm201344a] [PMID: 22329561]
[42]
Valtorta, S.; Nicolini, G.; Tripodi, F.; Meregalli, C.; Cavaletti, G.; Avezza, F.; Crippa, L.; Bertoli, G.; Sanvito, F.; Fusi, P.; Pagliarin, R.; Orsini, F.; Moresco, R.M.; Coccetti, P. A novel AMPK activator reduces glucose uptake and inhibits tumor progression in a mouse xenograft model of colorectal cancer. Invest. New Drugs, 2014, 32(6), 1123-1133.
[http://dx.doi.org/10.1007/s10637-014-0148-8] [PMID: 25134489]
[43]
O’Boyle, N.M.; Pollock, J.K.; Carr, M.; Knox, A.J.S.; Nathwani, S.M.; Wang, S.; Caboni, L.; Zisterer, D.M.; Meegan, M.J. β-Lactam estrogen receptor antagonists and a dual-targeting estrogen receptor/tubulin ligand. J. Med. Chem., 2014, 57(22), 9370-9382.
[http://dx.doi.org/10.1021/jm500670d] [PMID: 25369367]
[44]
Greene, T.F.; Wang, S.; Greene, L.M.; Nathwani, S.M.; Pollock, J.K.; Malebari, A.M.; McCabe, T.; Twamley, B.; O’Boyle, N.M.; Zisterer, D.M.; Meegan, M.J. Synthesis and biochemical evaluation of 3-phenoxy-1,4-diarylazetidin-2-ones as tubulin-targeting antitumor agents. J. Med. Chem., 2016, 59(1), 90-113.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01086] [PMID: 26680364]
[45]
Tripodi, F.; Dapiaggi, F.; Orsini, F.; Pagliarin, R.; Sello, G.; Coccetti, P. Synthesis and biological evaluation of new 3-amino-2-azetidinone derivatives as anti-colorectal cancer agents. MedChemComm, 2018, 9(5), 843-852.
[http://dx.doi.org/10.1039/C8MD00147B] [PMID: 30108973]
[46]
Yang, Z.Q. Synthesis and in vitro biological activity evaluation of the derivatives of combretastatin A-4. Lett. Drug Des. Discov., 2006, 3, 544-546.
[http://dx.doi.org/10.2174/157018006778194727]
[47]
Wang, S.; Malebari, A.M.; Greene, T.F.; O’Boyle, N.M.; Fayne, D.; Nathwani, S.M.; Twanley, B.; McCabe, T.; Keely, N.O.; Zisterer, D.M.; Meegan, M.J. 3-Vinylazetidin-2-ones: Synthesis, antiproliferative and tubulin destabilizing activity in MCF-7 and MDA-MB-231 breast cancer cells. Pharmaceuticals, 2019, 12(2), 56.
[48]
Greene, L.M.; Wang, S.; O’Boyle, N.M.; Bright, S.A.; Reid, J.E.; Kelly, P.; Meegan, M.J.; Zisterer, D.M. Combretazet-3 a novel synthetic cis-stable combretastatin A-4-azetidinone hybrid with enhanced stability and therapeutic efficacy in colon cancer. Oncol. Rep., 2013, 29(6), 2451-2458.
[http://dx.doi.org/10.3892/or.2013.2379] [PMID: 23564200]
[49]
Malebari, A.M.; Greene, L.M.; Nathwani, S.M.; Fayne, D.; O’Boyle, N.M.; Wang, S.; Twamley, B.; Zisterer, D.M.; Meegan, M.J. β-Lactam analogues of combretastatin A-4 prevent metabolic inactivation by glucuronidation in chemoresistant HT-29 colon cancer cells. Eur. J. Med. Chem., 2017, 130, 261-285.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.049] [PMID: 28254699]
[50]
Greene, L.M.; Nathwani, S.M.; Bright, S.A.; Fayne, D.; Croke, A.; Gagliardi, M.; McElligott, A.M.; O’Connor, L.; Carr, M.; Keely, N.O.; O’Boyle, N.M.; Carroll, P.; Sarkadi, B.; Conneally, E.; Lloyd, D.G.; Lawler, M.; Meegan, M.J.; Zisterer, D.M. The vascular targeting agent combretastatin-A4 and a novel cis-Restricted beta-Lactam Analogue, CA-432, induce apoptosis in human chronic myeloid leukemia cells and ex vivo patient samples including those displaying multidrug resistance. J. Pharmacol. Exp. Ther., 2010, 335(2), 302-313.
[http://dx.doi.org/10.1124/jpet.110.170415] [PMID: 20699436]
[51]
Greene, L.M.; Carr, M.; Keeley, N.O.; Lawler, M.; Meegan, M.J.; Zisterer, D.M. BubR1 is required for the mitotic block induced by combretastatin-A4 and a novel cis-restricted ß-lactam analogue in human cancer cells. Int. J. Mol. Med., 2011, 27(5), 715-723.
[http://dx.doi.org/10.3892/ijmm.2011.633] [PMID: 21369694]
[52]
Greene, L.M.; O’Boyle, N.M.; Nolan, D.P.; Meegan, M.J.; Zisterer, D.M. The vascular targeting agent Combretastatin-A4 directly induces autophagy in adenocarcinoma-derived colon cancer cells. Biochem. Pharmacol., 2012, 84(5), 612-624.
[http://dx.doi.org/10.1016/j.bcp.2012.06.005] [PMID: 22705646]
[53]
O’Boyle, N.M.; Knox, A.J.S.; Price, T.T.; Williams, D.C.; Zisterer, D.M.; Lloyd, D.G.; Meegan, M.J. Lead identification of β-lactam and related imine inhibitors of the molecular chaperone heat shock protein 90. Bioorg. Med. Chem., 2011, 19(20), 6055-6068.
[http://dx.doi.org/10.1016/j.bmc.2011.08.048] [PMID: 21920765]
[54]
Nathwani, S.M.; Hughes, L.; Greene, L.M.; Carr, M.; O’Boyle, N.M.; McDonnell, S.; Meegan, M.J.; Zisterer, D.M. Novel cis-restricted β-lactam combretastatin A-4 analogues display anti-vascular and anti-metastatic properties in vitro. Oncol. Rep., 2013, 29(2), 585-594.
[http://dx.doi.org/10.3892/or.2012.2181] [PMID: 23232969]
[55]
O’Boyle, N.M.; Carr, M.; Greene, L.M.; Bergin, O.; Nathwani, S.M.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J. Med. Chem., 2010, 53(24), 8569-8584.
[http://dx.doi.org/10.1021/jm101115u] [PMID: 21080725]
[56]
O’Boyle, N.M.; Greene, L.M.; Bergin, O.; Fichet, J.B.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis, evaluation and structural studies of antiproliferative tubulin-targeting azetidin-2-ones. Bioorg. Med. Chem., 2011, 19(7), 2306-2325.
[http://dx.doi.org/10.1016/j.bmc.2011.02.022] [PMID: 21397510]
[57]
Kamal, A.; Ramesh, G.; Ramulu, P.; Srinivas, O.; Rehana, T.; Sheelu, G. Design and synthesis of novel chrysene-linked pyrrolo[2,1-c][1,4]-benzodiazepine hybrids as potential DNA-binding agents. Bioorg. Med. Chem. Lett., 2003, 13(20), 3451-3454.
[http://dx.doi.org/10.1016/S0960-894X(03)00743-1] [PMID: 14505647]
[58]
Bandyopadhyay, D.; Granados, J.C.; Short, J.D.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: Evaluation of synthesis and in vitro cytotoxicity. Oncol. Lett., 2012, 3(1), 45-49.
[http://dx.doi.org/10.3892/ol.2011.436] [PMID: 22740854]
[59]
Banik, B.K.; Becker, F.F. Novel 6,12-disubstituted chrysene as potent anticancer agent: synthesis, in vitro and in vivo study. Eur. J. Med. Chem., 2010, 45(10), 4687-4691.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.033] [PMID: 20702007]
[60]
Banik, B.K.; Basu, M.K.; Becker, F.F. Novel disubstituted chrysene as a potent agent against colon cancer. Oncol. Lett., 2010, 1(6), 1033-1035.
[http://dx.doi.org/10.3892/ol.2010.167] [PMID: 22870108]
[61]
Banik, I.; Becker, F.F.; Banik, B.K. Stereoselective synthesis of β-lactams with polyaromatic imines: entry to new and novel anticancer agents. J. Med. Chem., 2003, 46(1), 12-15.
[http://dx.doi.org/10.1021/jm0255825] [PMID: 12502355]
[62]
Banik, B.K.; Banik, I.; Becker, F.F. Stereocontrolled synthesis of anticancer β-lactams via the Staudinger reaction. Bioorg. Med. Chem., 2005, 13(11), 3611-3622.
[http://dx.doi.org/10.1016/j.bmc.2005.03.044] [PMID: 15862989]
[63]
Banik, B.K.; Becker, F.F.; Banik, I. Synthesis of anticancer β-lactams: mechanism of action. Bioorg. Med. Chem., 2004, 12(10), 2523-2528.
[http://dx.doi.org/10.1016/j.bmc.2004.03.033] [PMID: 15110834]
[64]
Banik, B.K.; Banik, I.; Becker, F.F. Asymmetric synthesis of anticancer β-lactams via Staudinger reaction: utilization of chiral ketene from carbohydrate. Eur. J. Med. Chem., 2010, 45(2), 846-848.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.024] [PMID: 19962794]
[65]
Banik, B.K.; Samajdar, S.; Becker, F.F. Asymmetric synthesis of anticancer β-lactams via Staudinger reaction. Mol. Med. Rep., 2010, 3(2), 319-321.
[http://dx.doi.org/10.3892/mmr_000000259] [PMID: 21472241]
[66]
Banik, B.K.; Becker, F.F. Selective anticancer activity of β-lactams derived from polyaromatic compound. Mol. Med. Rep., 2010, 3(2), 315-316.
[http://dx.doi.org/10.3892/mmr_000000257] [PMID: 21472239]
[67]
Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011]
[68]
Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur. J. Med. Chem., 2019, 162, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.025] [PMID: 30448416]
[69]
Mishra, R.; Sachan, N.; Kumar, N.; Mishra, I.; Chand, P. Thiophene scaffold as prospective antimicrobial agent: A review. J. Heterocycl. Chem., 2018, 55, 2019-2034.
[http://dx.doi.org/10.1002/jhet.3249]
[70]
Kurmis, A.A.; Yang, F.; Welch, T.R.; Nickols, N.G.; Dervan, P.B. A pyrrole-imidazole polyamide is active against enzalutamide-resistant prostate cancer. Cancer Res., 2017, 77(9), 2207-2212.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2503] [PMID: 28360139]
[71]
Alnabulsi, S.; Santina, E.; Russo, I.; Hussein, B.; Kadirvel, M.; Chadwick, A.; Bichenkova, E.V.; Bryce, R.A.; Nolan, K.; Demonacos, C.; Stratford, I.J.; Freeman, S. Non-symmetrical furan-amidines as novel leads for the treatment of cancer and malaria. Eur. J. Med. Chem., 2016, 111, 33-45.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.022] [PMID: 26854376]
[72]
Rakesh, K.S.; Jagadish, S.; Swaroop, T.R.; Mohan, C.D.; Ashwini, N.; Harsha, K.B.; Zameer, F.; Girish, K.S.; Rangappa, K.S. Anti-cancer activity of 2,4-disubstituted thiophene derivatives: Dual inhibitors of lipoxygenase and cyclooxygenase. Med. Chem., 2015, 11(5), 462-472.
[http://dx.doi.org/10.2174/1573406411666141210141918] [PMID: 25494807]
[73]
Swamy, P.M.G.; Prasad, Y.R.; Ashvini, H.M.; Giles, D.; Shashidhar, B.V.; Agasimundin, Y.S. Synthesis, anticancer and molecular docking studies of benzofuran derivatives. Med. Chem. Res., 2015, 24, 3437-3452.
[http://dx.doi.org/10.1007/s00044-015-1391-z]
[74]
Nimbalkar, U.D.; Seijas, J.A.; Borkute, R.; Damale, M.G.; Sangshetti, J.N.; Sarkar, D.; Nikalje, A.P.G. Ultrasound assisted synthesis of 4-(benzyloxy)-N-(3-chloro-2-(substitutedphenyl)-4-oxoazetidin-1-yl) benzamide as challenging anti-tubercular scaffold. Molecules, 2018, 23, e1945
[75]
Rane, R.A.; Bangalore, P.K.; Naphade, S.S.; Patel, H.M.; Palkar, M.B.; Karpoormath, R. Design and synthesis of novel antineoplastic agents inspired from marine bromopyrrole alkaloids. Anticancer. Agents Med. Chem., 2015, 15(5), 548-554.
[http://dx.doi.org/10.2174/1871520614666141203124745] [PMID: 25495466]
[76]
Khan, F.A.; Mushtaq, S.; Naz, S.; Farooq, U.; Zaidi, A.; Bukhari, S.M.; Rauf, A.; Mubarak, M.S. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem., 2018, 22, 818-830.
[http://dx.doi.org/10.2174/1385272822666180122153839]
[77]
Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett., 2019, 29(16), 2042-2050.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.041] [PMID: 31272793]
[78]
Gulçin, İ.; Taslimi, P. Sulfonamide inhibitors: a patent review 2013-present. Expert Opin. Ther. Pat., 2018, 28(7), 541-549.
[http://dx.doi.org/10.1080/13543776.2018.1487400] [PMID: 29886770]
[79]
Casini, A.; Scozzafava, A.; Supuran, C.T. Sulfonamide derivatives with protease inhibitory action as anticancer, anti-inflammatory and antiviral agents. Expert Opin. Ther. Pat., 2002, 12, 1307-1327.
[http://dx.doi.org/10.1517/13543776.12.9.1307]
[80]
Rakesh, K.P.; Wang, S.M.; Leng, J.; Ravindar, L.; Asiri, A.M.; Marwani, H.M.; Qin, H.L. Ravindar; Asiri, A. M.; Marwani, H. M.; Qin, H. L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2018, 18(4), 488-505.
[http://dx.doi.org/10.2174/1871520617666171103140749] [PMID: 29110622]
[81]
Casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, L.T. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr. Cancer Drug Targets, 2002, 2(1), 55-75.
[http://dx.doi.org/10.2174/1568009023334060] [PMID: 12188921]
[82]
Supuran, C.T. Indisulam: an anticancer sulfonamide in clinical development. Expert Opin. Investig. Drugs, 2003, 12(2), 283-287.
[http://dx.doi.org/10.1517/13543784.12.2.283] [PMID: 12556221]
[83]
Veinberg, G.; Vorona, M.; Nusel, D.; Bokaldere, R.; Shestakova, I.; Kanepe, I.; Lukevics, E. Synthesis of cytotoxic 4-sulfonyl-, 4-sulfonylthio- and 4-sulfothioazetidinones-2. Chem. Heterocycl. Compd., 2004, 40, 816-822.
[http://dx.doi.org/10.1023/B:COHC.0000040782.42204.4f]
[84]
Vorona, M.; Potorocina, I.; Veinberg, G.; Shestakova, I.; Kanepe, I.; Petrova, M.; Liepinsh, E.; Lukevics, E. Synthesis and structural modification of tert-butyl ester of 7α-chloro-2(N,N-dimethylaminomethylene)-2-methyl-1,1-dioxoceph-3-em-4-carboxylic acid. Chem. Heterocycl. Compd., 2007, 43, 646-652.
[http://dx.doi.org/10.1007/s10593-007-0101-2]
[85]
Potorocina, I.; Vorona, M.; Shestakova, I.; Domracheva, I.; Liepinsh, E.; Veinberg, G. Synthesis and biological activity of alkulidene-substituted cephems and penams. Chem. Heterocycl. Compd., 2011, 47, 767-775.
[http://dx.doi.org/10.1007/s10593-011-0832-y]
[86]
Pirahmadi, N.; Fazeli, M.; Zarghi, A.; Salimi, A.; Arefi, H.; Pourahmad, J. 4-(4-(Methylsulfonyl)phenyl)-3-phenoxy-1-phenylazetidin-2-one: A novel COX-2 inhibitor acting selectively and directly on cancerous Blymphocyte mitochondria. Toxicol. Environ. Chem., 2015, 97, 908-920.
[http://dx.doi.org/10.1080/02772248.2015.1068985]
[87]
Khdur, R.A.; Zimam, E.H. Synthesis and characterization of some new β-lactam derivatives from azo sulphadiazine and its biological evaluation as anticancer. Orient. J. Chem., 2018, 34, 371-380.
[http://dx.doi.org/10.13005/ojc/340140]
[88]
Qader, K.A.A.; Naser, A.W.; Farhan, M.S.; Salih, S.J. Synthesis, characterization and cytotoxic activity of some new 1,2,3-triazole, oxadiazole and aza-β-lactam derivatives. Orient. J. Chem., 2018, 34, 2350-2360.
[http://dx.doi.org/10.13005/ojc/340516]
[89]
Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem., 2019, 178, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071] [PMID: 31200236]
[90]
Kaur, R.; Dwivedi, A.R.; Kumar, B.; Kumar, V. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[91]
Veinberg, G.; Shestakova, I.; Vorona, M.; Kanepe, I.; Lukevics, E. Synthesis of antitumor 6-alkylidenepenicillanate sulfones and related 3-alkylidene-2-azetidinones. Bioorg. Med. Chem. Lett., 2004, 14(1), 147-150.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.078] [PMID: 14684317]
[92]
Fu, D.J.; Fu, L.; Liu, Y.C.; Wang, J.W.; Wang, Y.Q.; Han, B.K.; Li, X.R.; Zhang, C.; Li, F.; Song, J.; Zhao, B.; Mao, R.W.; Zhao, R.H.; Zhang, S.Y.; Zhang, L.; Zhang, Y.B.; Liu, H.M. Structure-activity relationship studies of β-lactam-azide snalogues as orally active antitumor agents targeting the tubulin colchicine site. Sci. Rep., 2017, 7,12788
[93]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[94]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[95]
Singh, P.; Raj, R.; Kumar, V.; Mahajan, M.P.; Bedi, P.M.S.; Kaur, T. Saxena. 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: Synthesis and anticancer evaluation. Eur. J. Med. Chem., 2012, 47, 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[96]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[97]
Wang, Y.; Zhang, W.; Dong, J.; Gao, J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Chem., 2020, 95, 103530
[http://dx.doi.org/10.1016/j.bioorg.2019.103530] [PMID: 31887477]
[98]
Borazjani, N.; Sepehri, S.; Behzadi, M.; Jarrahpour, A.; Rad, J.A.; Sasanipour, M.; Mohkam, M.; Ghasemi, Y.; Akbarizadeh, A.R.; Digiorgio, C.; Brunel, J.M.; Ghanbari, M.M.; Batta, G.; Turos, E. Three-component synthesis of chromeno β-lactam hybrids for inflammation and cancer screening. Eur. J. Med. Chem., 2019, 179, 389-403.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.036] [PMID: 31260892]
[99]
Khanam, R.; Kumar, R.; Hejazi, I.I.; Shahabuddin, S.; Meena, R.; Jayant, V.; Kumar, P.; Bhat, A.R.; Athar, F. Piperazine clubbed with 2-azetidinone derivatives suppresses proliferation, migration and induces apoptosis in human cervical cancer HeLa cells through oxidative stress mediated intrinsic mitochondrial pathway. Apoptosis, 2018, 23(2), 113-131.
[http://dx.doi.org/10.1007/s10495-018-1439-x] [PMID: 29349707]
[100]
Carr, M.; Knox, A.J.S.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Development of the β-lactam type molecular scaffold for selective estrogen receptor α modulator action: synthesis and cytotoxic effects in MCF-7 breast cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 3(sup3), 117-130.
[http://dx.doi.org/10.1080/14756366.2016.1210136] [PMID: 27476825]
[101]
Ahmed, M.F.; Magdy, N. Design and synthesis of 4-substituted quinazolines as potent EGFR inhibitors with anti-breast cancer activity. Anticancer. Agents Med. Chem., 2017, 17(6), 832-838.
[http://dx.doi.org/10.2174/1871520616666160923103222] [PMID: 27671305]
[102]
Alegaon, S.G.; Parchure, P.; Araujo, L.D.; Salve, P.S.; Alagawadi, K.R.; Jalalpure, S.S.; Kumbar, V.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines. Bioorg. Med. Chem. Lett., 2017, 27(7), 1566-1571.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.043] [PMID: 28262527]
[103]
Rad, J.A.; Jarrahpour, A.; Aseman, M.D.; Nabavizadeh, M.; Pournejati, R.; Karbalaei-Heidari, H.R.; Turos, E. Design, synthesis, DNA binding, cytotoxicity, and molecular docking studies of amonafide-linked β-lactam. ChemistrySelect, 2019, 4, 2741-2746.
[http://dx.doi.org/10.1002/slct.201803785]
[104]
Maia, D.P.; Wilke, D.V.; Mafezoli, J.; da Silva Júnior, J.N.; de Moraes, M.O.; Pessoa, C.; Costa-Lotufo, L.V. Studies on the cytotoxic activity of synthetic 2H-azirine-2-azetidinone compounds. Chem. Biol. Interact., 2009, 180(2), 220-225.
[http://dx.doi.org/10.1016/j.cbi.2009.02.015] [PMID: 19497420]
[105]
Arul, K.; Sunisha, K.S. In-silico design, synthesis and in vitro anticancer and antitubercular activity of novel azetidinone containing isatin derivatives. Int. J. Pharm. Pharm. Sci., 2014, 6, 506-513.
[106]
Mohammadi, S.; Akbari-Birgani, S.; Borji, M.; Kaboudin, B.; Vaezi, M. Diethyl [(3-phenoxy-2-oxo-4-phenyl-azetidin-1-yl)-phenyl-methyl]-phosphonate as a potent anticancer agent in chemo-differentiation therapy of acute promyelocytic leukemia. Eur. J. Pharmacol., 2019, 846, 79-85.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.003] [PMID: 30639798]
[107]
Abd-El-Maksoud, M.A.; El-Makawy, A.I.; Abdel-Aziem, S.H.; Maigali, S.S.; El-Hussienyl, M.; Mansour, S.T.; Soliman, F.M. Antitumor activities of new iso(thio)cyanates and their nitrogen and sulphur heterocyclic phosphorus derivatives. J. Appl. Pharm. Sci., 2019, 9, 1-11.
[http://dx.doi.org/10.7324/JAPS.2019.90201]
[108]
Khdur, R.A.; Zimam, E.H. Synthesis, characterization and study biological screening of some new azetidinone derivatives from azo-sulphadiazine. Par. J. Biotechnol., 2018, 15, 201-217.
[109]
Payili, N.; Yennam, S.; Rekula, S.R.; Naidu, G.G.; Bobde, Y.; Ghosh, B. Design, synthesis, and evaluation of the anticancer properties of novel quinone bearing carbamyl β-lactam hybrids. J. Heterocycl. Chem., 2018, 55, 1358-1365.
[http://dx.doi.org/10.1002/jhet.3169]
[110]
Dawra, N.; Ram, R.N. An efficient method for the synthesis of some chlorinated and heteroatom rich triazole-linked β-lactam glycoconjugates. Tetrahedron, 2016, 72, 7982-7991.
[http://dx.doi.org/10.1016/j.tet.2016.10.036]
[111]
Banik, B.K. Novel synthesis of β-lactams and their biological evaluation. J. Indian Chem. Soc., 2014, 91, 1837-1860.
[112]
Patel, A.B.; Chikhalia, K.H.; Kumari, P. Study of new β-lactams-substituted s-triazine derivatives as potential bioactive agents. Med. Chem. Res., 2015, 24, 468-481.
[http://dx.doi.org/10.1007/s00044-014-1151-5]
[113]
Piens, N.; Vreese, R.D.; Neve, N.D.; Hecke, K.V.; Balzarini, J.; Kimpe, N.D.; D’hooghe, M. Synthesis of novel Thymine-β-lactam hybrids and evaluation of their antitumor activity. Synth., 2014, 46, 2436-2444.
[http://dx.doi.org/10.1055/s-0033-1338647]
[114]
Smith, D.M.; Kazi, A.; Smith, L.; Long, T.E.; Heldreth, B.; Turos, E.; Dou, Q.P. A novel β-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Mol. Pharmacol., 2002, 61(6), 1348-1358.
[http://dx.doi.org/10.1124/mol.61.6.1348] [PMID: 12021396]
[115]
Cainelli, G.; Galletti, P.; Garbisa, S.; Giacomini, D.; Sartor, L.; Quintavalla, A. 4-alkylidene-azetidin-2-ones: novel inhibitors of leukocyte elastase and gelatinase. Bioorg. Med. Chem., 2003, 11(24), 5391-5399.
[http://dx.doi.org/10.1016/j.bmc.2003.09.035] [PMID: 14642583]
[116]
Kazi, A.; Hill, R.; Long, T.E.; Kuhn, D.J.; Turos, E.; Dou, Q.P. Novel N-thiolated β-lactam antibiotics selectively induce apoptosis in human tumor and transformed, but not normal or nontransformed, cells. Biochem. Pharmacol., 2004, 67(2), 365-374.
[http://dx.doi.org/10.1016/j.bcp.2003.09.017] [PMID: 14698048]
[117]
Oh, S.; Jung, J.C.; Avery, M.A. Synthesis of new β-lactam analogs and evaluation of their histone deacetylase (HDAC) activity. Z. Naturforsch., 2007, 62b, 1459-1464.
[http://dx.doi.org/10.1515/znb-2007-1116]
[118]
Ruf, S.; Neudert, G. Gurtler, Grunert, R.; Bednarski, P. J.; Otto, H. H. β-Lactam derivatives as potential anti-cancer compounds. Monatsh. Chem., 2008, 139, 847-857.
[http://dx.doi.org/10.1007/s00706-007-0838-4]
[119]
Chen, D.; Falsetti, S.C.; Frezza, M.; Milacic, V.; Kazi, A.; Cui, Q.C.; Long, T.E.; Turos, E.; Dou, Q.P. Anti-tumor activity of N-thiolated β-lactam antibiotics. Cancer Lett., 2008, 268(1), 63-69.
[http://dx.doi.org/10.1016/j.canlet.2008.03.047] [PMID: 18468785]
[120]
Rajashekar Reddy, C.B.; Rajasekhara Reddy, S.; Suthindhiran, K.; Sivakumar, A. HDAC and NF-κB mediated cytotoxicity induced by novel N-Chloro β-lactams and benzisoxazole derivatives. Chem. Biol. Interact., 2016, 246, 69-76.
[http://dx.doi.org/10.1016/j.cbi.2016.01.010] [PMID: 26776669]
[121]
Dražić, T.; Molčanov, K.; Sachdev, V.; Malnar, M.; Hećimović, S.; Patankar, J.V.; Obrowsky, S.; Levak-Frank, S.; Habuš, I.; Kratky, D. Novel amino-β-lactam derivatives as potent cholesterol absorption inhibitors. Eur. J. Med. Chem., 2014, 87, 722-734.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.014] [PMID: 25305716]
[122]
Galletti, P.; Soldati, R.; Pori, M.; Durso, M.; Tolomelli, A.; Gentilucci, L.; Dattoli, S.D.; Baiula, M.; Spampinato, S.; Giacomini, D. Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. Eur. J. Med. Chem., 2014, 83, 284-293.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.041] [PMID: 24973662]
[123]
Zachariah, S.M.; Ramkumar, M.; George, N.; Ashif, M.S.; Varghese, A. In silico design, synthesis, characterization and in vitro evaluation of some novel anti-lung cancer molecules. Int. J. Pharm. Tech., 2016, 8, 11221-11235.
[124]
Meegan, M.J.; Carr, M.; Knox, A.J.S.; Zisterer, D.M.; Lloyd, D.G. β-lactam type molecular scaffolds for antiproliferative activity: synthesis and cytotoxic effects in breast cancer cells. J. Enzyme Inhib. Med. Chem., 2008, 23(5), 668-685.
[http://dx.doi.org/10.1080/14756360802469127] [PMID: 18821256]
[125]
Rashidi, M.; Islami, M.R.; Esmaeili-Mahani, S. Design and stereoselective synthesis of novel β-lactone and β-lactams as potent anticancer agents on breast cancer cells. Tetrahedron, 2018, 74, 835-841.
[http://dx.doi.org/10.1016/j.tet.2017.12.044]
[126]
Aljuhani, E. Medium controlled stoichiometric complexation of Penicillin G-potassium drug with Se(IV), Nb(V), Ta(V), and Te(IV) chlorides: Physicochemical and antitumor activity of the complexes. Russ. J. Gen. Chem., 2019, 89, 1042-1050.
[http://dx.doi.org/10.1134/S1070363219050268]
[127]
Veinberg, G.; Bokaldere, R. Dikovskaya, Vorona, M.; Kanepe, I.; Shestakova, I.; Yashchenko, E.; Lukevics, E. Synthesis of cytotoxic 1,3,4-trisubstituted 2-azetidinones. Chem. Heterocycl. Compd., 2003, 39, 587-593.
[http://dx.doi.org/10.1023/A:1025185830067]
[128]
Pérez-Faginas, P.; Aranda, M.T.; García-López, M.T.; Francesch, A.; Cuevas, C.; González-Muñiz, R. Optically active 1,3,4,4-tetrasubstituted β-lactams: synthesis and evaluation as tumor cell growth inhibitors. Eur. J. Med. Chem., 2011, 46(10), 5108-5119.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.025] [PMID: 21885166]
[129]
Geesala, R.; Gangasani, J.K.; Budde, M.; Balasubramanian, S.; Vaidya, J.R.; Das, A. 2-Azetidinones: Synthesis and biological evaluation as potential anti-breast cancer agents. Eur. J. Med. Chem., 2016, 124, 544-558.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.041] [PMID: 27608432]
[130]
Aubry, S.; Aubert, G.; Cresteil, T.; Crich, D. Synthesis and biological investigation of the β-thiolactone and β-lactam analogs of tetrahydrolipstatin. Org. Biomol. Chem., 2012, 10(13), 2629-2632.
[http://dx.doi.org/10.1039/c2ob06976h] [PMID: 22354549]
[131]
Gao, H.T.; Wang, H.M.; Hou, N.; Guo, X.R.; Zeng, X.H.; Hu, Y.G. Synthesis, crystal structure and antitumor activities of 2-acyl-β-lactam-2-carboxamides. Chin. J. Struct. Chem., 2019, 38, 416-421.
[132]
Chimento, A.; Sala, M.; Gomez-Monterrey, I.M.; Musella, S.; Bertamino, A.; Caruso, A.; Sinicropi, M.S.; Sirianni, R.; Puoci, F.; Parisi, O.I.; Campana, C.; Martire, E.; Novellino, E.; Saturnino, C.; Campiglia, P.; Pezzi, V. Biological activity of 3-chloro-azetidin-2-one derivatives having interesting antiproliferative activity on human breast cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(23), 6401-6405.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.054] [PMID: 24119558]
[133]
Singh, R.; Micetich, R.G. 4-oxa-1-azabicyclo[3.2.0]heptan-7-one derivatives as anti-tumor agents. Curr. Med. Chem. Anticancer Agents, 2003, 3(6), 431-438.
[http://dx.doi.org/10.2174/1568011033482233] [PMID: 14529451]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy