Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Bio-mimicking Shear Stress Environments for Enhancing Mesenchymal Stem Cell Differentiation

Author(s): Seep Arora, Akshaya Srinivasan, Chak Ming Leung and Yi-Chin Toh*

Volume 15, Issue 5, 2020

Page: [414 - 427] Pages: 14

DOI: 10.2174/1574888X15666200408113630

Price: $65

Abstract

Mesenchymal stem cells (MSCs) are multipotent stromal cells, with the ability to differentiate into mesodermal (e.g., adipocyte, chondrocyte, hematopoietic, myocyte, osteoblast), ectodermal (e.g., epithelial, neural) and endodermal (e.g., hepatocyte, islet cell) lineages based on the type of induction cues provided. As compared to embryonic stem cells, MSCs hold a multitude of advantages from a clinical translation perspective, including ease of isolation, low immunogenicity and limited ethical concerns. Therefore, MSCs are a promising stem cell source for different regenerative medicine applications. The in vitro differentiation of MSCs into different lineages relies on effective mimicking of the in vivo milieu, including both biochemical and mechanical stimuli. As compared to other biophysical cues, such as substrate stiffness and topography, the role of fluid shear stress (SS) in regulating MSC differentiation has been investigated to a lesser extent although the role of interstitial fluid and vascular flow in regulating the normal physiology of bone, muscle and cardiovascular tissues is well-known. This review aims to summarise the current state-of-the-art regarding the role of SS in the differentiation of MSCs into osteogenic, cardiovascular, chondrogenic, adipogenic and neurogenic lineages. We will also highlight and discuss the potential of employing SS to augment the differentiation of MSCs to other lineages, where SS is known to play a role physiologically but has not yet been successfully harnessed for in vitro differentiation, including liver, kidney and corneal tissue lineage cells. The incorporation of SS, in combination with biochemical and biophysical cues during MSC differentiation, may provide a promising avenue to improve the functionality of the differentiated cells by more closely mimicking the in vivo milieu.

Keywords: Mesenchymal stem cells, shear stress, mechanical stimulus, differentiation, biomimicking, microenvironmental cues.

[1]
Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 2014; 20(6): 596-608.
[http://dx.doi.org/10.1089/ten.teb.2013.0771] [PMID: 24749845]
[2]
Tan AR, Hung CT. Concise review: Mesenchymal stem cells for functional cartilage tissue engineering: Taking cues from chondrocytebased con-structs 2017 1295-303.
[3]
Yuan L, Sakamoto N, Song G, Sato M. High-level Shear Stress Stimulates Endothelial Differentiation and VEGF Secretion by Human Mesenchymal Stem Cells. Cell Mol Bioeng 2013; 6(2): 220-9.
[http://dx.doi.org/10.1007/s12195-013-0275-x]
[4]
Dan P, Velot A%, Decot V, Menu P. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 2015; 128(14): 2415-22.
[http://dx.doi.org/10.1242/jcs.167783] [PMID: 26116570]
[5]
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016; 92(1-2): 41-51.
[http://dx.doi.org/10.1016/j.diff.2016.02.005] [PMID: 27012163]
[6]
Huang NF, Li S. Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann Biomed Eng 2011; 39(4): 1201-14.
[http://dx.doi.org/10.1007/s10439-011-0297-2] [PMID: 21424849]
[7]
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89.
[http://dx.doi.org/10.1016/j.cell.2006.06.044] [PMID: 16923388]
[8]
McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ. Nanotopographical control of stem cell differentiation 2010; 1-3.
[9]
Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007; 313(9): 1820-9.
[http://dx.doi.org/10.1016/j.yexcr.2007.02.031] [PMID: 17428465]
[10]
Lee J, Abdeen AA, Kilian KA. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci Rep 2014; 4: 5188.
[http://dx.doi.org/10.1038/srep05188] [PMID: 24898422]
[11]
Bai K, Huang Y, Jia X, Fan Y, Wang W. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. J Biomech 2010; 43(6): 1176-81.
[http://dx.doi.org/10.1016/j.jbiomech.2009.11.030] [PMID: 20022602]
[12]
Henderson K, Sligar AD, Le VP, Lee J, Baker AB. Biomechanical Regulation of Mesenchymal Stem Cells for Cardiovascular Tissue Engineering. Adv Healthc Mater 2017; 6(22)
[http://dx.doi.org/10.1002/adhm.201700556] [PMID: 28945009]
[13]
Gao X, Zhang X, Xu H, Zhou B, Wen W, Qin J. Regulation of cell migration and osteogenic differentiation in mesenchymal stem cells under extremely low fluidic shear stress. Biomicrofluidics 2014; 8(5)052008
[http://dx.doi.org/10.1063/1.4896557]
[14]
Cochis A, Grad S, Stoddart MJ, et al. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep 2017; 7: 45018.
[http://dx.doi.org/10.1038/srep45018] [PMID: 28332587]
[15]
Schätti O, Grad S, Goldhahn J, et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater 2011; 22: 214-25.
[http://dx.doi.org/10.22203/eCM.v022a17] [PMID: 22048899]
[16]
Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ. Mechanical load modulates chondrogenesis of human mesen-chymal stem cells through the TGF-β pathway Journal of Cellu-lar and Molecular Medicine 2010 ; 14((6 A)): 1338-46..
[17]
Homayouni Moghadam F, Tayebi T, Moradi A, Nadri H, Barzegar K, Eslami G. Treatment with platelet lysate induces endothelial differentation of bone marrow mesenchymal stem cells under fluid shear stress. EXCLI J 2014; 13: 638-49.
[PMID: 26417289]
[18]
Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J 1994; 8(11): 875-8.
[http://dx.doi.org/10.1096/fasebj.8.11.8070637] [PMID: 8070637]
[19]
Hillsley MV, Frangos JA. Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng 1994; 43(7): 573-81.
[http://dx.doi.org/10.1002/bit.260430706] [PMID: 11540959]
[20]
Rochefort GY, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int 2010; 21(9): 1457-69.
[http://dx.doi.org/10.1007/s00198-010-1194-5] [PMID: 20204595]
[21]
Kawata A, Mikuni-Takagaki Y. Mechanotransduction in stretched osteocytes--temporal expression of immediate early and other genes. Biochem Biophys Res Commun 1998; 246(2): 404-8.
[http://dx.doi.org/10.1006/bbrc.1998.8632] [PMID: 9610372]
[22]
Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 1994; 27(3): 339-60.
[http://dx.doi.org/10.1016/0021-9290(94)90010-8] [PMID: 8051194]
[23]
Grellier M, Bareille R, Bourget C, AmA(c)dA(c)e J. Responsiveness of human bone marrow stromal cells to shear stress. J Tissue Eng Regen Med 2009; 3(4): 302-9.
[http://dx.doi.org/10.1002/term.166] [PMID: 19283726]
[24]
Liu L, Yu B, Chen J, et al. Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomech Model Mechanobiol 2012; 11(3-4): 391-401.
[http://dx.doi.org/10.1007/s10237-011-0319-x] [PMID: 21633819]
[25]
Lim KT, Kim J, Seonwoo H, et al. Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fluid shear stress in a rocking culture method. Tissue Eng Part C Methods 2013; 19(2): 128-45.
[http://dx.doi.org/10.1089/ten.tec.2012.0017] [PMID: 23088630]
[26]
Kim KM, Choi YJ, Hwang JH, et al. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One 2014; 9(3)e92427
[http://dx.doi.org/10.1371/journal.pone.0092427] [PMID: 24658423]
[27]
Zheng L, Chen L, Chen Y, et al. The effects of fluid shear stress on proliferation and osteogenesis of human periodontal ligament cells. J Biomech 2016; 49(4): 572-9.
[http://dx.doi.org/10.1016/j.jbiomech.2016.01.034] [PMID: 26892895]
[28]
Elashry MI, Gegnaw ST, Klymiuk MC, Wenisch S, Arnhold S. Influence of mechanical fluid shear stress on the osteogenic differentiation protocols for Equine adipose tissue-derived mesenchymal stem cells. Acta Histochem 2019; 121(3): 344-53.
[http://dx.doi.org/10.1016/j.acthis.2019.02.002] [PMID: 30808518]
[29]
Pasini A, Lovecchio J, Ferretti G, Giordano E. Medium Perfusion Flow Improves Osteogenic Commitment of Human Stromal Cells. Stem Cells Int 2019; 20191304194
[http://dx.doi.org/10.1155/2019/1304194] [PMID: 31191662]
[30]
Lim KT, Hexiu J, Kim J, Seonwoo H, Choung PH, Chung JH. Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells. BioMed Res Int 2014; 2014316803
[http://dx.doi.org/10.1155/2014/316803] [PMID: 24575406]
[31]
Rossello RA, Kohn DH. Gap junction intercellular communication: a review of a potential platform to modulate craniofacial tissue engineering. J Biomed Mater Res B Appl Biomater 2009; 88(2): 509-18.
[http://dx.doi.org/10.1002/jbm.b.31127] [PMID: 18481782]
[32]
Cherian PP, Siller-Jackson AJ, Gu S, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 2005; 16(7): 3100-6.
[http://dx.doi.org/10.1091/mbc.e04-10-0912] [PMID: 15843434]
[33]
Lembong J, Lerman MJ, Kingsbury TJ, Civin CI, Fisher JP. A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures. Tissue Eng Part A 2018; 24(23-24): 1715-32.
[http://dx.doi.org/10.1089/ten.tea.2018.0020] [PMID: 29845891]
[34]
Hu K, Sun H, Gui B, Sui C. TRPV4 functions in flow shear stress induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. Biomed Pharmacother 2017; 91: 841-8.
[http://dx.doi.org/10.1016/j.biopha.2017.04.094] [PMID: 28501773]
[35]
Liu YS, Liu YA, Huang CJ, et al. Mechanosensitive TRPM7 mediates shear stress and modulates osteogenic differentiation of mesenchymal stromal cells through Osterix pathway. Sci Rep 2015; 5: 16522.
[http://dx.doi.org/10.1038/srep16522] [PMID: 26558702]
[36]
Arora S, Yim EKF, Toh Y-C. Environmental Specification of Pluripotent Stem Cell Derived Endothelial Cells Toward Arterial and Venous Subtypes. Front Bioeng Biotechnol 2019; 7: 143.
[http://dx.doi.org/10.3389/fbioe.2019.00143] [PMID: 31259171]
[37]
Wang H, Riha GM, Yan S, et al. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol 2005; 25(9): 1817-23.
[http://dx.doi.org/10.1161/01.ATV.0000175840.90510.a8] [PMID: 15994439]
[38]
Bassaneze V, Barauna VG, Lavini-Ramos C, et al. Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev 2010; 19(3): 371-8.
[http://dx.doi.org/10.1089/scd.2009.0195] [PMID: 19754225]
[39]
Zhang P, Baxter J, Vinod K, Tulenko TN, Di Muzio PJ. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells Dev 2009; 18(9): 1299-308.
[http://dx.doi.org/10.1089/scd.2008.0331] [PMID: 19508152]
[40]
Kim HW, Lim J, Rhie JW, Kim DS. Investigation of effective shear stress on endothelial differentiation of human adipose-derived stem cells with microfluidic screening device. Microelectron Eng 2017; 174: 24-7.
[http://dx.doi.org/10.1016/j.mee.2016.12.022]
[41]
Garanich JS, Pahakis M, Tarbell JM. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am J Physiol Heart Circ Physiol 2005; 288(5): H2244-52.
[http://dx.doi.org/10.1152/ajpheart.00428.2003] [PMID: 15637127]
[42]
Kim DH, Heo SJ, Kim SH, Shin JW, Park SH, Shin JW. Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol Lett 2011; 33(12): 2351-9.
[http://dx.doi.org/10.1007/s10529-011-0706-5] [PMID: 21805363]
[43]
Maul TM, Chew DW, Nieponice A, Vorp DA. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 2011; 10(6): 939-53.
[http://dx.doi.org/10.1007/s10237-010-0285-8] [PMID: 21253809]
[44]
Kim DH, Heo SJ, Kang YG, Shin JW, Park SH, Shin JW. Shear stress and circumferential stretch by pulsatile flow direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels. J Mater Sci Mater Med 2016; 27(3): 60.
[http://dx.doi.org/10.1007/s10856-016-5670-0] [PMID: 26800691]
[45]
Dong JD, Gu YQ, Li CM, et al. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol Sin 2009; 30(5): 530-6.
[http://dx.doi.org/10.1038/aps.2009.40] [PMID: 19417732]
[46]
Jahnsen ED, Trindade A, Zaun HC, Lehoux S, Duarte A, Jones EAV. Notch1 is pan-endothelial at the onset of flow and regulat-ed by flow.PloS one 2015; 10: p (4)e0122622.
[47]
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1(6): 461-8.
[http://dx.doi.org/10.1177/1941738109350438] [PMID: 23015907]
[48]
Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. British Medical Bulletin 2008; pp 77-95
[49]
An YH, Martin KL, Hu JCY, Athanasiou KA. Structure and function of articular cartilage Handbook of histology methods for bone and cartilageHumana Press Totowa, NJ. 2003; pp. 73-96.
[50]
Mellor LF, Steward AJ, Nordberg RC, Taylor MA, Loboa EG. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC. Aerosp Med Hum Perform 2017; 88(4): 377-84.
[http://dx.doi.org/10.3357/AMHP.4743.2017] [PMID: 28518000]
[51]
Leong DJ, Li YH, Gu XI, et al. Physiological loading of joints prevents cartilage degradation through CITED2. FASEB J 2011; 25(1): 182-91.
[http://dx.doi.org/10.1096/fj.10-164277] [PMID: 20826544]
[52]
Fu S, Thompson CL, Ali A, et al. Mechanical loading inhibits cartilage inflammatory signalling via an HDAC6 and IFT-dependent mechanism regulating primary cilia elongation. Osteoarthritis Cartilage 2019; 27(7): 1064-74.
[http://dx.doi.org/10.1016/j.joca.2019.03.003] [PMID: 30922983]
[53]
Li Z, Yao S-J, Alini M, Stoddart MJ. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A 2010; 16(2): 575-84.
[http://dx.doi.org/10.1089/ten.tea.2009.0262] [PMID: 19737049]
[54]
Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin construct. Biomaterials 2014; 35(24): 6236-47.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.040] [PMID: 24818890]
[55]
Wimmer MA, Grad S, Kaup T, et al. Tribology approach to the engineering and study of articular cartilage. Tissue Eng 2004; 10(9-10): 1436-45.
[http://dx.doi.org/10.1089/ten.2004.10.1436] [PMID: 15588403]
[56]
Lanniel M, Huq E, Allen S, Buttery L, Williams PM, Alexander MR. Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter 2011; 7(14): 6501-14.
[http://dx.doi.org/10.1039/c1sm05167a]
[57]
D'Angelo F, Armentano I, Mattioli S, et al. Micropatterned hydrogenated amorphous carbon guides mesenchymal stem cells towards neuronal differentiation. Eur Cell Mater 2010; 20: 231-44.
[http://dx.doi.org/10.22203/eCM.v020a19] [PMID: 20925022]
[58]
Jeon KJ, Park SH, Shin JW, et al. Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells. J Biosci Bioeng 2014; 117(2): 242-7.
[http://dx.doi.org/10.1016/j.jbiosc.2013.08.002] [PMID: 23993713]
[59]
Mascotte-Cruz JU, RA-os A, Escalante B. Combined effects of flow-induced shear stress and electromagnetic field on neural differentiation of mesenchymal stem cells. Electromagn Biol Med 2016; 35(2): 161-6.
[PMID: 26325339]
[60]
Choi J, Lee SY, Yoo YM, Kim CH. Maturation of Adipocytes is Suppressed by Fluid Shear Stress. Cell Biochem Biophys 2017; 75(1): 87-94.
[http://dx.doi.org/10.1007/s12013-016-0771-4] [PMID: 27830366]
[61]
Hossain MG, Iwata T, Mizusawa N, et al. Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARgamma2 and C/EBPalpha. J Biosci Bioeng 2010; 109(3): 297-303.
[http://dx.doi.org/10.1016/j.jbiosc.2009.09.003] [PMID: 20159581]
[62]
Tanataweethum N, Zelaya A, Yang F, Cohen RN, Brey EM, Bhushan A. Establishment and characterization of a primary murine adipose tissue-chip. Biotechnol Bioeng 2018; 115(8): 1979-87.
[http://dx.doi.org/10.1002/bit.26711] [PMID: 29689639]
[63]
Zayzafoon M, Gathings WE, McDonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 2004; 145(5): 2421-32.
[http://dx.doi.org/10.1210/en.2003-1156] [PMID: 14749352]
[64]
Molladavoodi S, Robichaud M, Wulff D, Gorbet M. Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour. PLoS One 2017; 12(6)e0178981
[http://dx.doi.org/10.1371/journal.pone.0178981] [PMID: 28662184]
[65]
Wu HW, Lin CC, Hwang SM, Chang YJ, Lee GB, Eds. A micro-fluidic device for chemical and mechanical stimulation of mes-enchymal stem cells. Microfluidics and Nanofluidics 2011; 11: 545-56.
[66]
Kim SH, Choi YR, Park MS, et al. ERK 1/2 activation in enhanced osteogenesis of human mesenchymal stem cells in poly(lactic-glycolic acid) by cyclic hydrostatic pressure. J Biomed Mater Res A 2007; 80(4): 826-36.
[http://dx.doi.org/10.1002/jbm.a.30945] [PMID: 17061251]
[67]
Yue D, Zhang M, Lu J, Zhou J, Bai Y, Pan J. The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells. J Cell Physiol 2019. [Epub ahead of print Feb 19, 2019].
[http://dx.doi.org/ 10.1002/jcp.28296] [PMID: 30784070]
[68]
Lu J, Fan Y, Gong X, et al. The Lineage Specification of Mesenchymal Stem Cells Is Directed by the Rate of Fluid Shear Stress. J Cell Physiol 2016; 231(8): 1752-60.
[http://dx.doi.org/10.1002/jcp.25278] [PMID: 26636289]
[69]
Zuk PA. Tissue engineering craniofacial defects with adult stem cells? Are we ready yet? Pediatr Res 2008; 63(5): 478-86.
[http://dx.doi.org/10.1203/PDR.0b013e31816bdf36] [PMID: 18427291]
[70]
Abadin AA, Vernon LL, Kaplan LD, Huang CYC, Eds. Reducing apoptosis of porcine cartilage through mechanical loading fol-lowing impact injury. 2013.
[71]
Adamo L, García-Cardeña G. Directed stem cell differentiation by fluid mechanical forces. Antioxid Redox Signal 2011; 15(5): 1463-73.
[http://dx.doi.org/10.1089/ars.2011.3907] [PMID: 21294651]
[72]
Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WWY. Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol 2015; 15(Suppl. 1): 155.
[http://dx.doi.org/10.1186/s12886-015-0138-4] [PMID: 26818606]
[73]
Condorelli L, Cattaneo I, Arrigoni C, Antiga L, Perico N, Remuz-zi A, Eds. Effect of fluid shear stress on tubular kidney epithelial cell structure. World Congress on Medical Physics and Biomedi-cal Engineering. September 7 - 12, 2009; Munich, Germany. 2010.2010;
[74]
Srivastava T, Celsi GE, Sharma M, et al. Fluid flow shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 2014; 29(1): 65-72.
[http://dx.doi.org/10.1093/ndt/gft387] [PMID: 24166460]
[75]
Fan M, Zhang J, Xin H, He X, Zhang X. Current Perspectives on Role of MSC in Renal Pathophysiology. Front Physiol 2018; 9: 1323.
[http://dx.doi.org/10.3389/fphys.2018.01323] [PMID: 30294285]
[76]
Rashidi H, Alhaque S, Szkolnicka D, Flint O, Hay DC. Fluid shear stress modulation of hepatocyte-like cell function. Arch Toxicol 2016; 90(7): 1757-61.
[http://dx.doi.org/10.1007/s00204-016-1689-8] [PMID: 26979076]
[77]
Nakatsuka H, Sokabe T, Yamamoto K, et al. Shear stress induces hepatocyte PAI-1 gene expression through cooperative Sp1/Ets-1 activation of transcription. Am J Physiol Gastrointest Liver Physiol 2006; 291(1): G26-34.
[http://dx.doi.org/10.1152/ajpgi.00467.2005] [PMID: 16500919]
[78]
Snykers S, De Kock J, Tamara V, Rogiers V. Hepatic Differentia-tion of Mesenchymal Stem Cells: In vitro Strate-giesMesenchymal Stem Cell Assays and Applications. Totowa, NJ: Humana Press 2011; pp. 305-14.
[http://dx.doi.org/10.1007/978-1-60761-999-4_23]
[79]
Wang Y-H, Wu D-B, Chen B, Chen E-Q, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9(1): 227.
[http://dx.doi.org/10.1186/s13287-018-0972-4] [PMID: 30143052]
[80]
Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman PI, Klein-Nulend J. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 2005; 11(11-12): 1780-8.
[http://dx.doi.org/10.1089/ten.2005.11.1780] [PMID: 16411823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy