Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics in modulating immune functions of stromal and immune cells in the tumor microenvironment

Abstract

Epigenetic regulation of gene expression in cancer cells has been extensively studied in recent decades, resulting in the FDA approval of multiple epigenetic agents for treating different cancer types. Recent studies have revealed novel roles of epigenetic dysregulation in altering the phenotypes of immune cells and tumor-associated stromal cells, including fibroblasts and endothelial cells. As a result, epigenetic dysregulation of these cells reshapes the tumor microenvironment (TME), changing it from an antitumor environment to an immunosuppressive environment. Here, we review recent studies demonstrating how specific epigenetic mechanisms drive aspects of stromal and immune cell differentiation with implications for the development of solid tumor therapeutics, focusing on the pancreatic ductal adenocarcinoma (PDA) TME as a representative of solid tumors. Due to their unique ability to reprogram the TME into a more immunopermissive environment, epigenetic agents have great potential for sensitizing cancer immunotherapy to augment the antitumor response, as an immunopermissive TME is a prerequisite for the success of cancer immunotherapy but is often not developed with solid tumors. The idea of combining epigenetic agents with cancer immunotherapy has been tested both in preclinical settings and in multiple clinical trials. In this review, we highlight the basic biological mechanisms underlying the synergy between epigenetic therapy and immunotherapy and discuss current efforts to translate this knowledge into clinical benefits for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    Article  PubMed  Google Scholar 

  3. Ducreux, M. et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26(Suppl 5), v56–v68 (2015).

    Article  PubMed  Google Scholar 

  4. Chang, J. H., Jiang, Y. & Pillarisetty, V. G. Role of immune cells in pancreatic cancer from bench to clinical application: an updated review. Medicine 95, e5541 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Karagiannis, G. S. et al. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res. 10, 1403–1418 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guo, S. & Deng, C.-X. Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J. Biol. Sci. 14, 2083–2093 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Marks, D. L., Olson, R. L. & Fernandez-Zapico, M. E. Epigenetic control of the tumor microenvironment. Epigenomics 8, 1671–1687 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Murakami, T. et al. Role of the tumor microenvironment in pancreatic cancer. Ann. Gastroenterol. Surg. 3, 130–137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun, Q. et al. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics 8, 5072–5087 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Albrengues, J. et al. LIF mediates proinvasive activation of stromal fibroblasts in cancer. Cell Rep. 7, 1664–1678 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Erdogan, B. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 216, 3799–3816 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bates, A. L. et al. Stromal matrix metalloproteinase 2 regulates collagen expression and promotes the outgrowth of experimental metastases. J. Pathol. 235, 773–783 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhao, W. et al. Galectin-3 mediates tumor cell-stroma interactions by activating pancreatic stellate cells to produce cytokines via integrin signaling. Gastroenterology 154, 1524–1537.e1526 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Choe, C. et al. Tumor-stromal interactions with direct cell contacts enhance motility of non-small cell lung cancer cells through the hedgehog signaling pathway. Anticancer Res. 33, 3715–3723 (2013).

    PubMed  CAS  Google Scholar 

  18. Shiga, K. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers 7, 2443–2458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Qiu, W. et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat. Genet. 40, 650–655 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Epelman, S., Lavine, K. J. & Randolph, G. J. Origin and functions of tissue macrophages. Immunity 41, 21–35 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Mielgo, A. & Schmid, M. C. Impact of tumour associated macrophages in pancreatic cancer. BMB Rep. 46, 131–138 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Karp, C. L. & Murray, P. J. Non-canonical alternatives: what a macrophage is 4. J. Exp. Med. 209, 427–431 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    Article  PubMed  CAS  Google Scholar 

  28. Ugel, S., De Sanctis, F., Mandruzzato, S. & Bronte, V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Investig. 125, 3365–3376 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Greten, F. R. et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. Karin, M. & Greten, F. R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749–759 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4, e6562–e6562 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ruffell, B., Affara, N. I. & Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yoshikawa, K. et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci. 103, 2012–2020 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Talmadge, J. E. & Gabrilovich, D. I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 13, 739–752 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tu, S. et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 14, 408–419 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Thyagarajan, A. et al. Myeloid-derived suppressor cells and pancreatic cancer: implications in novel therapeutic approaches. Cancers 11, 1627 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  38. Anani W. & Shurin M. R. Targeting myeloid-derived suppressor cells in cancer. In: Kalinski P., ed. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. 105–128 (Springer International Publishing, Cham, 2017).

  39. Tartour, E. et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 30, 83–95 (2011).

    Article  PubMed  CAS  Google Scholar 

  40. Khaled, Y. S., Ammori, B. J. & Elkord, E. Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol. Cell Biol. 91, 493–502 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Liu, G. et al. SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. Cancer Res. 74, 727 (2014).

    Article  PubMed  CAS  Google Scholar 

  42. Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 21, 822–835 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Schmidl, C., Delacher, M., Huehn, J. & Feuerer, M. Epigenetic mechanisms regulating T-cell responses. J. Allergy Clin. Immunol. 142, 728–743 (2018).

    Article  PubMed  CAS  Google Scholar 

  44. Xia, A., Zhang, Y., Xu, J., Yin, T. & Lu, X.-J. T cell dysfunction in cancer immunity and immunotherapy. Front. Immunol. 10, 1719–1719 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tough, D. F., Rioja, I., Modis, L. K. & Prinjha, R. K. Epigenetic regulation of T cell memory: recalling therapeutic implications. Trends Immunol. 41, 29–45 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e119 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang, M., Yin, B., Wang, H. Y. & Wang, R.-F. Current advances in T-cell-based cancer immunotherapy. Immunotherapy 6, 1265–1278 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Maimela, N. R., Liu, S. & Zhang, Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct. Biotechnol. J. 17, 1–13 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Stromnes, I. M., Hulbert, A., Pierce, R. H., Greenberg, P. D. & Hingorani, S. R. T-cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 5, 978–991 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang, Y. et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 10, 422 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    Article  PubMed  CAS  Google Scholar 

  53. Xiao, Q. et al. Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation. Cancer Res. 76, 5395–5404 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Waddington, C. H. Embryology, epigenetics and biogenetics. Nature 177, 1241–1241 (1956).

    Article  Google Scholar 

  55. Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Jin, B. & Robertson, K. D. DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol. 754, 3–29 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mathieu, O., Picard, G. & Tourmente, S. Methylation of a euchromatin-heterochromatin transition region in Arabidopsis thaliana chromosome 5 left arm. Chromosome Res. 10, 455–466 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. Huff, J. T. & Zilberman, D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286–1297 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 26, 577–590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. Egger, G. et al. Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc. Natl Acad. Sci. USA 103, 14080–14085 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Kareta, M. S., Botello, Z. M., Ennis, J. J., Chou, C. & Chedin, F. Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J. Biol. Chem. 281, 25893–25902 (2006).

    Article  PubMed  CAS  Google Scholar 

  64. Hervouet, E., Peixoto, P., Delage-Mourroux, R., Boyer-Guittaut, M. & Cartron, P.-F. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin. Epigenetics. 10, 17 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jair, K. W. et al. De novo CpG island methylation in human cancer cells. Cancer Res. 66, 682–692 (2006).

    Article  PubMed  CAS  Google Scholar 

  66. Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell Biol. 22, 480–491 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).

    Article  PubMed  CAS  Google Scholar 

  68. Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lian Christine, G. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135–1146 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Klymenko, Y. & Nephew, K. P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers 10, 295 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  71. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ellis, L., Atadja, P. W. & Johnstone, R. W. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther. 8, 1409–1420 (2009).

    Article  PubMed  CAS  Google Scholar 

  73. Yang, X. J. & Seto, E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26, 5310–5318 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Jambhekar, A., Dhall, A. & Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 20, 625–641 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rossetto, D., Avvakumov, N. & Côté, J. Histone phosphorylation. Epigenetics 7, 1098–1108 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Banerjee, T. & Chakravarti, D. A peek into the complex realm of histone phosphorylation. Mol. Cell. Biol. 31, 4858 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Becker, P. B. & Hörz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7, 437–447 (2006).

    Article  PubMed  CAS  Google Scholar 

  82. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  PubMed  CAS  Google Scholar 

  83. Ozturk, N., Singh, I., Mehta, A., Braun, T. & Barreto, G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev. Biol. 2, 5–5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    Article  PubMed  CAS  Google Scholar 

  85. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Mechanism of chromatin remodeling. Proc. Natl Acad. Sci. 107, 3458 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    Article  PubMed  CAS  Google Scholar 

  88. Zinzalla, G. A new way forward in cancer drug discovery: inhibiting the SWI/SNF chromatin remodelling complex. Chembiochem 17, 677–682 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Shain, A. H. et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc. Natl Acad. Sci. USA 109, E252–E259 (2012).

    Article  PubMed  CAS  Google Scholar 

  90. Hanson, J. A. et al. Gene promoter methylation in prostate tumor-associated stromal cells. J. Natl Cancer Inst. 98, 255–261 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat. Genet. 37, 899–905 (2005).

    Article  PubMed  CAS  Google Scholar 

  92. Yu, J. et al. Unlike pancreatic cancer cells pancreatic cancer associated fibroblasts display minimal gene induction after 5-aza-2′-deoxycytidine. PLoS ONE 7, e43456–e43456 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Iba, K., Albrechtsen, R., Gilpin, B. J., Loechel, F. & Wewer, U. M. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am. J. Pathol. 154, 1489–1501 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bhagat, T. D. et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. Elife 8, e50663 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tyan, S. W. et al. Breast cancer cells induce stromal fibroblasts to secrete ADAMTS1 for cancer invasion through an epigenetic change. PLoS ONE 7, e35128 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Li, A., Chen, P., Leng, Y. & Kang, J. Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-dependent pathway. Oncogene 37, 5952–5966 (2018).

    Article  PubMed  CAS  Google Scholar 

  97. Zong, Y. et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc. Natl Acad. Sci. 109, E3395 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Schuyler, R. P. et al. Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep. 17, 2101–2111 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yang, X. et al. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol. 28, 565–574 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cheng, C. et al. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicol. Lett. 225, 488–497 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Sun, F. et al. TET1 is an important transcriptional activator of TNFalpha expression in macrophages. PLoS ONE 14, e0218551 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tikhanovich, I. et al. Protein arginine methyltransferase 1 modulates innate immune responses through regulation of peroxisome proliferator-activated receptor gamma-dependent macrophage differentiation. J. Biol. Chem. 292, 6882–6894 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kittan, N. A. et al. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS ONE 8, e78045 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Satoh, T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11, 936–944 (2010).

    Article  PubMed  CAS  Google Scholar 

  105. Yu, W. et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol. Cell. 75, 1147–1160.e1145 (2019).

    Article  PubMed  CAS  Google Scholar 

  106. Tan, A. H. Y. et al. Lysine-specific histone demethylase 1A regulates macrophage polarization and checkpoint molecules in the tumor microenvironment of triple-negative breast cancer. Front Immunol. 10, 1351 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Cao, Q. et al. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb. Vasc. Biol. 34, 1871–1879 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Villagra, A. et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol. 10, 92–100 (2009).

    Article  PubMed  CAS  Google Scholar 

  109. Yang, Q. et al. Cross talk between histone deacetylase 4 and STAT6 in the transcriptional regulation of arginase 1 during mouse dendritic cell differentiation. Mol. Cell Biol. 35, 63–75 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Yoshizaki, T. et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 298, E419–E428 (2010).

    Article  PubMed  CAS  Google Scholar 

  111. Li, T. et al. SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. Nucleic Acids Res. 48, 665–681 (2020).

    Article  PubMed  CAS  Google Scholar 

  112. Das Gupta, K. et al. Class IIa histone deacetylases drive toll-like receptor-inducible glycolysis and macrophage inflammatory responses via pyruvate kinase M2. Cell Rep. 30, 2712–2728.e2718 (2020).

    Article  PubMed  CAS  Google Scholar 

  113. Chang, Y. C. et al. Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111, 5054–5063 (2008).

    Article  PubMed  CAS  Google Scholar 

  114. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Sasidharan Nair, V. et al. Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clin. Epigenetics. 12, 13 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Rodríguez-Ubreva, J. et al. Prostaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep. 21, 154–167 (2017).

    Article  PubMed  CAS  Google Scholar 

  117. Redd, P. S. et al. SETD1B activates iNOS expression in myeloid-derived suppressor cells. Cancer Res. 77, 2834 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sahakian, E. et al. Histone deacetylase 11: a novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol. Immunol. 63, 579–585 (2015).

    Article  PubMed  CAS  Google Scholar 

  119. Youn, J.-I. et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat. Immunol. 14, 211–220 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. de Almeida Nagata, D. E. et al. Regulation of tumor-associated myeloid cell activity by CBP/EP300 bromodomain modulation of H3K27 acetylation. Cell Rep. 27, 269–281.e264 (2019).

    Article  PubMed  CAS  Google Scholar 

  121. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Li, X. et al. Increased IFNgamma(+) T cells are responsible for the clinical responses of low-dose DNA-demethylating agent decitabine antitumor therapy. Clin. Cancer Res. 23, 6031–6043 (2017).

    Article  PubMed  CAS  Google Scholar 

  123. Yang, R. et al. Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biol. 21, 2 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kakaradov, B. et al. Early transcriptional and epigenetic regulation of CD8(+) T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18, 422–432 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wang, J. et al. Histone deacetylase inhibitors and IL21 cooperate to reprogram human effector CD8+ T cells to memory T cells. Cancer Immunol. Res. 2020:canimm.0619.2019.

  127. Stephen, T. L. et al. SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells. Immunity 46, 51–64 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069 (2018).

    Article  PubMed  Google Scholar 

  130. Zhao, X. & Subramanian, S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 77, 817–822 (2017).

    Article  PubMed  CAS  Google Scholar 

  131. Bonaventura, P. et al. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10, 168–168 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yan, Y. et al. Combining immune checkpoint inhibitors with conventional cancer therapy. Front. Immunol. 9, 1739–1739 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev. Immunol. 25, 267–296 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Marincola, F. M., Jaffee, E. M., Hicklin, D. J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    Article  PubMed  CAS  Google Scholar 

  136. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  137. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lanitis E., Dangaj D., Irving M. & Coukos G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 28(suppl_12), xii18–xii32 (2017).

  139. Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–e4050 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  140. Woo, E. Y. et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 61, 4766–4772 (2001).

    PubMed  CAS  Google Scholar 

  141. de Charette, M., Marabelle, A. & Houot, R. Turning tumour cells into antigen presenting cells: the next step to improve cancer immunotherapy? Eur. J. Cancer 68, 134–147 (2016).

    Article  PubMed  CAS  Google Scholar 

  142. Christmas, B. J. et al. Entinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCs. Cancer Immunol. Res. 2018:canimm.0070.2018.

  143. Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–e10990 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  144. Topper, M. J. et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171, 1284–1300.e1221 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Li, H. et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5, 587–598 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 579, 284–290 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  149. McKee, M. D., Roszkowski, J. J. & Nishimura, M. I. T cell avidity and tumor recognition: implications and therapeutic strategies. J. Transl. Med. 3, 35 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Ritter, C. et al. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci. Rep. 7, 2290 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Siebenkas, C. et al. Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS ONE 12, e0179501 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kim, V. M. et al. Neoantigen-based EpiGVAX vaccine initiates antitumor immunity in colorectal cancer. JCI Insight. 5, e136368 (2020).

    Article  PubMed Central  Google Scholar 

  153. Topper, M. J., Vaz, M., Marrone, K. A., Brahmer, J. R. & Baylin, S. B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 75–90 (2020).

    Article  PubMed  Google Scholar 

  154. Sheahan, A. V. et al. Targeting EZH2 increases therapeutic efficacy of check-point blockade in models of prostate cancer. https://www.biorxiv.org/content/10.1101/730135v1 (2019).

Download references

Acknowledgements

This work was supported in part by NIH grant T32 CA126607 (L.Z.); NIH grant R01 CA169702 (L.Z.); NIH grant R01 CA197296 (L.Z.); the Viragh Foundation and the Skip Viragh Pancreatic Cancer Center at Johns Hopkins (L.Z.); the Sol Goldman Pancreatic Cancer Research Center (L.Z.); NCI SPORE P50 CA062924 (L.Z.); and Cancer Center Support Grant P30 CA006973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zheng.

Ethics declarations

Competing interests

L.Z. receives grant support from Bristol-Myers Squibb, Merck, iTeos, Amgen, NovaRock, InxMed, and Halozyme. L.Z. is a paid consultant/Advisory Board Member at Biosion, Alphamab, NovaRock, Akrevia, DataRevive, and Mingruzhiyao. L.Z. holds shares of Alphamab and Mingruzhiyao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zheng, L. Epigenetics in modulating immune functions of stromal and immune cells in the tumor microenvironment. Cell Mol Immunol 17, 940–953 (2020). https://doi.org/10.1038/s41423-020-0505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0505-9

Keywords

This article is cited by

Search

Quick links