Skip to main content
Log in

Nanoscale Run-In of Silicon Oxide-Doped Hydrogenated Amorphous Carbon: Dependence of Interfacial Shear Strength on Sliding Length and Humidity

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We conducted atomic force microscopy (AFM) experiments by sliding hard tetrahedral amorphous carbon (ta-C)-coated and diamond AFM probes against silicon oxide-doped hydrogenated amorphous carbon (a-C:H:Si:O) films. We reproducibly observe a substantial reduction in friction with repeated sliding. This behavior qualitatively resembles the run-in effects generally seen in macroscale frictional sliding on diamond-like carbons (DLCs), including this a-C:H:Si:O film in particular. As the applied normal load is increased with repetitive sliding, the friction reduces in tandem. The lateral stiffness of the nanoscale contact is measured as a function of applied normal load, thus the real contact area and the interfacial shear strength are inferred throughout the sliding experiments. These measurements show that the friction reduction is caused by a reduction in the interfacial shear strength of the contact. We propose that this arises from sliding-induced structural modification of the a-C:H:Si:O film. The calculated shear strengths are more than an order of magnitude higher than estimates from macroscale friction experiments. Additionally, humidity-controlled experiments show no significant humidity dependence of the friction despite a very strong dependence at macroscale. Reasons for these contradictions with macroscale experiments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Casiraghi, C., Robertson, J., Ferrari, A.C.: Diamond-like carbon for data and beer storage. Mater. Today 10, 44–53 (2007). https://doi.org/10.1016/S1369-7021(06)71791-6

    Article  CAS  Google Scholar 

  2. Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 37, 129–281 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  3. Donnet, C., Erdemir, A.: Tribology of Diamond-Like Carbon Films Fundamentals and Applications. Springer, New York (2008)

    Book  Google Scholar 

  4. Andersson, J., Erck, R.A., Erdemir, A.: Friction of diamond-like carbon films in different atmospheres. Wear 254, 1070–1075 (2003). https://doi.org/10.1016/S0043-1648(03)00336-3

    Article  CAS  Google Scholar 

  5. Konicek, A.R.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B. (2012). https://doi.org/10.1103/PhysRevB.85.155448

    Article  Google Scholar 

  6. Romero, P.A., Pastewka, L., Lautz, J.V., Moseler, M.: Surface passivation and boundary lubrication of self-mated tetrahedral amorphous carbon asperities under extreme tribological conditions. Friction 2, 193–208 (2014). https://doi.org/10.1007/s40544-014-0057-z

    Article  CAS  Google Scholar 

  7. Manimunda, P., Al-Azizi, A., Kim, S.H., Chromik, R.R.: Shear-induced structural changes and origin of ultralow friction of hydrogenated diamond-like carbon (DLC) in dry environment. ACS Appl. Mater. Interfaces. 9, 16704–16714 (2017). https://doi.org/10.1021/acsami.7b03360

    Article  CAS  Google Scholar 

  8. Koshigan, K.D., Mangolini, F., McClimon, J.B., Vacher, B., Bec, S., Carpick, R.W., Fontaine, J.: Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon 93, 851–860 (2015). https://doi.org/10.1016/j.carbon.2015.06.004

    Article  CAS  Google Scholar 

  9. Kester, D.J., Brodbeck, C.L., Singer, I.L., Kyriakopoulos, A.: Sliding wear behavior of diamond-like nanocomposite coatings. Surf. Coat. Technol. 113, 268–273 (1999). https://doi.org/10.1016/S0257-8972(99)00003-1

    Article  CAS  Google Scholar 

  10. Venkatraman, C., Brodbeck, C., Lei, R.: Tribological properties of diamond-like nanocomposite coatings at high temperatures. Surf. Coat. Technol. 115, 215–221 (1999). https://doi.org/10.1016/S0257-8972(99)00241-8

    Article  CAS  Google Scholar 

  11. Mangolini, F., Krick, B.A., Jacobs, T.D.B., Khanal, S.R., Streller, F., McClimon, J.B., Hilbert, J., Prasad, S.V., Scharf, T.W., Ohlhausen, J.A., Lukes, J.R., Sawyer, W.G., Carpick, R.W.: Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions. Carbon 130, 127–136 (2018). https://doi.org/10.1016/j.carbon.2017.12.096

    Article  CAS  Google Scholar 

  12. Kidena, K., Endo, M., Takamatsu, H., Imai, R., Niibe, M., Yokota, K., Tagawa, M., Furuyama, Y., Komatsu, K., Saitoh, H., Kanda, K.: Hyperthermal atomic oxygen beam irradiation effect on the hydrogenated Si-doped DLC film. Trans. Mater. Res. Soc. Jpn. 40, 363–368 (2015). https://doi.org/10.14723/tmrsj.40.363

    Article  CAS  Google Scholar 

  13. Mangolini, F., McClimon, J.B., Segersten, J., Hilbert, J., Heaney, P., Lukes, J.R., Carpick, R.W.: Silicon oxide-rich diamond-like carbon: a conformal, ultrasmooth thin film material with high thermo-oxidative stability. Adv. Mater. Interfaces 6, 1801416 (2019). https://doi.org/10.1002/admi.201801416

    Article  CAS  Google Scholar 

  14. Mangolini, F., Hilbert, J., McClimon, J.B., Lukes, J.R., Carpick, R.W.: Thermally induced structural evolution of silicon- and oxygen-containing hydrogenated amorphous carbon: a combined spectroscopic and molecular dynamics simulation investigation. Langmuir 34, 2989–2995 (2018). https://doi.org/10.1021/acs.langmuir.7b04266

    Article  CAS  Google Scholar 

  15. McClimon, J.B., Lang, A.C., Milne, Z., Garabedian, N., Moore, A.C., Hilbert, J., Mangolini, F., Lukes, J.R., Burris, D.L., Taheri, M.L., Fontaine, J., Carpick, R.W.: Investigation of the mechanics, composition, and functional behavior of thick tribofilms formed from silicon- and oxygen-containing hydrogenated amorphous carbon. Tribol. Lett. 67, 48 (2019). https://doi.org/10.1007/s11249-019-1155-x

    Article  CAS  Google Scholar 

  16. Fontaine, J., Le Mogne, T., Loubet, J.L., Belin, M.: Achieving superlow friction with hydrogenated amorphous carbon: some key requirements. Thin Solid Films 482, 99–108 (2005). https://doi.org/10.1016/j.tsf.2004.11.126

    Article  CAS  Google Scholar 

  17. Gangopadhyay, A.K., Willermet, P.A., Tamor, M.A., Vassell, W.C.: Amorphous hydrogenated carbon films for tribological applications I. Development of moisture insensitive films having reduced compressive stress. Tribol. Int. 30, 9–18 (1997). https://doi.org/10.1016/0301-679X(96)00017-5

    Article  CAS  Google Scholar 

  18. Gilmore, R., Hauert, R.: Comparative study of the tribological moisture sensitivity of Si-free and Si-containing diamond-like carbon films. Surf. Coat. Technol. 133–134, 437–442 (2000). https://doi.org/10.1016/S0257-8972(00)00927-0

    Article  Google Scholar 

  19. Racine, B., Ferrari, A.C., Morrison, N.A., Hutchings, I., Milne, W.I., Robertson, J.: Properties of amorphous carbon–silicon alloys deposited by a high plasma density source. J. Appl. Phys. 90, 5002–5012 (2001). https://doi.org/10.1063/1.1406966

    Article  CAS  Google Scholar 

  20. Oguri, K., Arai, T.: Two different low friction mechanisms of diamond-like carbon with silicon coatings formed by plasma-assisted chemical vapor deposition. J. Mater. Res. 7, 1313–1316 (1992). https://doi.org/10.1557/JMR.1992.1313

    Article  CAS  Google Scholar 

  21. Scharf, T.W., Singer, I.L.: Monitoring transfer films and friction instabilities with in situ Raman tribometry. Tribol. Lett. 14, 3–8 (2003). https://doi.org/10.1023/A:1021942830132

    Article  CAS  Google Scholar 

  22. Scharf, T.W., Ohlhausen, J.A., Tallant, D.R., Prasad, S.V.: Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. 101, 063521-1–063521-11 (2007). https://doi.org/10.1063/1.2711147

    Article  CAS  Google Scholar 

  23. Koshigan, K.D.: Understanding the Influence of Environment on the Solid Lubrication Processes of Carbon-Based Thin Films. Ecully, Ecole centrale de Lyon, Lyon (2015)

    Google Scholar 

  24. Alazizi, A., Draskovics, A., Ramirez, G., Erdemir, A., Kim, S.H.: Tribochemistry of carbon films in oxygen and humid environments: oxidative wear and galvanic corrosion. Langmuir (2016). https://doi.org/10.1021/acs.langmuir.5b04207

    Article  Google Scholar 

  25. Andersson, J., Erck, R.A., Erdemir, A.: Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Technol. 163–164, 535–540 (2003). https://doi.org/10.1016/S0257-8972(02)00617-5

    Article  Google Scholar 

  26. Donnet, C., Mogne, T.L., Ponsonnet, L., Belin, M., Grill, A., Patel, V., Jahnes, C.: The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings. Tribol. Lett. 4, 259–265 (1998). https://doi.org/10.1023/A:1019140213257

    Article  CAS  Google Scholar 

  27. Kim, H.I., Lince, J.R., Eryilmaz, O.L., Erdemir, A.: Environmental effects on the friction of hydrogenated DLC films. Tribol. Lett. 21, 51–56 (2006). https://doi.org/10.1007/s11249-005-9008-1

    Article  CAS  Google Scholar 

  28. Enke, K., Dimigen, H., Hübsch, H.: Frictional properties of diamondlike carbon layers. Appl. Phys. Lett. 36, 291–292 (1980). https://doi.org/10.1063/1.91465

    Article  CAS  Google Scholar 

  29. Scharf, T.W., Singer, I.L.: Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans. 45, 363–371 (2002). https://doi.org/10.1080/10402000208982561

    Article  CAS  Google Scholar 

  30. Eryilmaz, O.L., Erdemir, A.: Surface analytical investigation of nearly-frictionless carbon films after tests in dry and humid nitrogen. Surf. Coat. Technol. 201, 7401–7407 (2007). https://doi.org/10.1016/j.surfcoat.2007.02.005

    Article  CAS  Google Scholar 

  31. Sánchez-López, J.C., Belin, M., Donnet, C., Quirós, C., Elizalde, E.: Friction mechanisms of amorphous carbon nitride films under variable environments: a triboscopic study. Surf. Coat. Technol. 160, 138–144 (2002). https://doi.org/10.1016/S0257-8972(02)00397-3

    Article  Google Scholar 

  32. Heimberg, J.A., Wahl, K.J., Singer, I.L., Erdemir, A.: Superlow friction behavior of diamond-like carbon coatings: time and speed effects. Appl. Phys. Lett. 78, 2449–2451 (2001). https://doi.org/10.1063/1.1366649

    Article  CAS  Google Scholar 

  33. McGuiggan, P.M., Hsu, S.M., Fong, W., Bogy, D., Bhatia, C.S.: Friction measurements of ultra-thin carbon overcoats in air. J. Tribol. 124, 239–244 (1999). https://doi.org/10.1115/1.1387035

    Article  CAS  Google Scholar 

  34. Manelli, O., Corni, S., Righi, M.C.: Water adsorption on native and hydrogenated diamond (001) surfaces. J. Phys. Chem. C. 114, 7045–7053 (2010). https://doi.org/10.1021/jp910971e

    Article  CAS  Google Scholar 

  35. Kajita, S., Righi, M.C.: A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics. Carbon 1000, 10000 (2016). https://doi.org/10.1016/j.carbon.2016.02.078

    Article  CAS  Google Scholar 

  36. Zilibotti, G., Corni, S., Righi, M.C.: Load-induced confinement activates diamond lubrication by water. Phys. Rev. Lett. 111, 146101 (2013). https://doi.org/10.1103/PhysRevLett.111.146101

    Article  CAS  Google Scholar 

  37. Martínez-Martínez, D., Kolodziejczyk, L., Sánchez-López, J.C., Fernández, A.: Tribological carbon-based coatings: an AFM and LFM study. Surf. Sci. 603, 973–979 (2009). https://doi.org/10.1016/j.susc.2009.01.043

    Article  CAS  Google Scholar 

  38. Riedo, E., Chevrier, J., Comin, F., Brune, H.: Nanotribology of carbon based thin films: the influence of film structure and surface morphology. Surf. Sci. 477, 25–34 (2001). https://doi.org/10.1016/S0039-6028(01)00701-4

    Article  CAS  Google Scholar 

  39. Turri, R.G., Santos, R.M., Rangel, E.C., da Cruz, N.C., Bortoleto, J.R.R., Dias da Silva, J.H., Antonio, C.A., Durrant, S.F.: Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition. Appl. Surf. Sci. 280, 474–481 (2013). https://doi.org/10.1016/j.apsusc.2013.05.013

    Article  CAS  Google Scholar 

  40. Yan, X., Xu, T., Chen, G., Yang, S., Liu, H.: Study of structure, tribological properties and growth mechanism of DLC and nitrogen-doped DLC films deposited by electrochemical technique. Appl. Surf. Sci. 236, 328–335 (2004). https://doi.org/10.1016/j.apsusc.2004.05.005

    Article  CAS  Google Scholar 

  41. Corbella, C., Vives, M., Oncins, G., Canal, C., Andújar, J.L., Bertran, E.: Characterization of DLC films obtained at room temperature by pulsed-dc PECVD. Diam. Relat. Mater. 13, 1494–1499 (2004). https://doi.org/10.1016/j.diamond.2003.10.079

    Article  CAS  Google Scholar 

  42. Kunze, T., Posselt, M., Gemming, S., Seifert, G., Konicek, A.R., Carpick, R.W., Pastewka, L., Moseler, M.: Wear, plasticity, and rehybridization in tetrahedral amorphous carbon. Tribol. Lett. 53, 119–126 (2014). https://doi.org/10.1007/s11249-013-0250-7

    Article  CAS  Google Scholar 

  43. M’ndange-Pfupfu, A., Ciston, J., Eryilmaz, O., Erdemir, A., Marks, L.D.: Direct observation of tribochemically assisted wear on diamond-like carbon thin films. Tribol. Lett. 49, 351–356 (2012). https://doi.org/10.1007/s11249-012-0074-x

    Article  CAS  Google Scholar 

  44. Tambe, N.S., Bhushan, B.: Nanoscale friction-induced phase transformation of diamond-like carbon. Scr. Mater. 52, 751–755 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.013

    Article  CAS  Google Scholar 

  45. Bhushan, B., Kwak, K.J.: Velocity dependence of nanoscale wear in atomic force microscopy. Appl. Phys. Lett. 91, 163113 (2007). https://doi.org/10.1063/1.2800375

    Article  CAS  Google Scholar 

  46. Chung, K.-H., Kim, D.-E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003). https://doi.org/10.1023/A:1024457132574

    Article  CAS  Google Scholar 

  47. Sundararajan, S., Bhushan, B.: Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear 225, 678–689 (1999). https://doi.org/10.1016/S0043-1648(99)00024-1

    Article  Google Scholar 

  48. Bhushan, B., Koinkar, V.N.: Microscale mechanical and tribological characterization of hard amorphous carbon coatings as thin as 5 nm for magnetic disks. Surf. Coat. Technol. 76, 655–669 (1995). https://doi.org/10.1016/0257-8972(96)80003-X

    Article  Google Scholar 

  49. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013). https://doi.org/10.1038/nnano.2012.255

    Article  CAS  Google Scholar 

  50. Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008). https://doi.org/10.1103/PhysRevLett.101.125501

    Article  CAS  Google Scholar 

  51. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010). https://doi.org/10.1038/nnano.2010.3

    Article  CAS  Google Scholar 

  52. Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999). https://doi.org/10.1063/1.1150021

    Article  CAS  Google Scholar 

  53. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298 (1996). https://doi.org/10.1063/1.1147411

    Article  CAS  Google Scholar 

  54. Li, Q., Kim, K.-S., Rydberg, A.: Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system. Rev. Sci. Instrum. 77, 065105 (2006). https://doi.org/10.1063/1.2209953

    Article  CAS  Google Scholar 

  55. Villarrubia, J.S.: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl Inst. Stand. Technol. 102, 425–454 (1997). https://doi.org/10.6028/jres.102.030

    Article  CAS  Google Scholar 

  56. Auciello, O., Sumant, A.V.: Status review of the science and technology of ultrananocrystalline diamond (UNCDTM) films and application to multifunctional devices. Diam. Relat. Mater. 19, 699–718 (2010). https://doi.org/10.1016/j.diamond.2010.03.015

    Article  CAS  Google Scholar 

  57. Williams, P.M., Shakesheff, K.M., Davies, M.C., Jackson, D.E., Roberts, C.J., Tendler, S.J.B.: Blind reconstruction of scanning probe image data. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14, 1557–1562 (1996). https://doi.org/10.1116/1.589138

    Article  CAS  Google Scholar 

  58. Ferrari, A.C., Robertson, J., Beghi, M.G., Bottani, C.E., Ferulano, R., Pastorelli, R.: Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. Appl. Phys. Lett. 75, 1893–1895 (1999). https://doi.org/10.1063/1.124863

    Article  CAS  Google Scholar 

  59. Cho, S., Chasiotis, I., Friedmann, T.A., Sullivan, J.P.: Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices. J. Micromech. Microeng. 15, 728 (2005). https://doi.org/10.1088/0960-1317/15/4/009

    Article  CAS  Google Scholar 

  60. Weidenmann, K.A., Tavangar, R., Weber, L.: Mechanical behaviour of diamond reinforced metals. Mater. Sci. Eng. A. 523, 226–234 (2009). https://doi.org/10.1016/j.msea.2009.05.069

    Article  CAS  Google Scholar 

  61. Mangolini, F., Rose, F., Hilbert, J., Carpick, R.W.: Thermally induced evolution of hydrogenated amorphous carbon. Appl. Phys. Lett. 103, 161605 (2013). https://doi.org/10.1063/1.4826100

    Article  CAS  Google Scholar 

  62. Cléchet, P., Martelet, C., Belin, M., Zarrad, H., Jaffrezic-Renault, N., Fayeulle, S.: Lubrication of silicon micromechanisms by chemical grafting of long-chain molecules. Sensors Actuators Phys. 44, 77–81 (1994). https://doi.org/10.1016/0924-4247(94)00777-2

    Article  Google Scholar 

  63. Ren, S., Yang, S., Zhao, Y., Zhou, J., Xu, T., Liu, W.: Friction and Wear studies of octadecyltrichlorosilane SAM on silicon. Tribol. Lett. 13, 233–239 (2002). https://doi.org/10.1023/A:1021076824408

    Article  CAS  Google Scholar 

  64. Fontaine, J., Loubet, J.L., Le Mogne, T., Grill, A.: Superlow friction of diamond-like carbon films: a relation to viscoplastic properties. Tribol. Lett. 17, 709–714 (2004). https://doi.org/10.1007/s11249-004-8077-x

    Article  CAS  Google Scholar 

  65. Muller, V.M., Derjaguin, B.V., Toporov, YuP: On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf. 7, 251–259 (1983). https://doi.org/10.1016/0166-6622(83)80051-1

    Article  CAS  Google Scholar 

  66. Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997). https://doi.org/10.1063/1.118639

    Article  CAS  Google Scholar 

  67. Lantz, M.A., O’Shea, S.J., Hoole, A.C.F., Welland, M.E.: Lateral stiffness of the tip and tip-sample contact in frictional force microscopy. Appl. Phys. Lett. 70, 970–972 (1997). https://doi.org/10.1063/1.118476

    Article  CAS  Google Scholar 

  68. Piétrement, O., Troyon, M.: Study of the interfacial shear strength pressure dependence by modulated lateral force microscopy. Langmuir 17, 6540–6546 (2001). https://doi.org/10.1021/la010458u

    Article  CAS  Google Scholar 

  69. Luan, B., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E. 74, 026111 (2006). https://doi.org/10.1103/PhysRevE.74.026111

    Article  CAS  Google Scholar 

  70. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004). https://doi.org/10.1103/PhysRevLett.92.134301

    Article  CAS  Google Scholar 

  71. Carpick, R.W.: The study of contact, adhesion and friction at the atomic scale by atomic force microscopy (1997). https://alliance.seas.upenn.edu/~carpickg/dynamic/wordpress/wp-content/uploads/2012/03/Carpick_Thesis.pdf

  72. Grierson, D.S., Carpick, R.W.: Nanotribology of carbon-based materials. Nano Today. 2, 12–21 (2007). https://doi.org/10.1016/S1748-0132(07)70139-1

    Article  Google Scholar 

  73. Yoon, E.-S., Singh, R.A., Oh, H.-J., Kong, H.: The effect of contact area on nano/micro-scale friction. Wear 259, 1424–1431 (2005). https://doi.org/10.1016/j.wear.2005.01.033

    Article  CAS  Google Scholar 

  74. Alsem, D.H., Dugger, M.T., Stach, E.A., Ritchie, R.O.: Micron-scale friction and sliding wear of polycrystalline silicon thin structural films in ambient air. J. Microelectromech. Syst. 17, 1144–1154 (2008). https://doi.org/10.1109/JMEMS.2008.927751

    Article  CAS  Google Scholar 

  75. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  CAS  Google Scholar 

  76. Xiao, J., Zhang, L., Zhou, K., Li, J., Xie, X., Li, Z.: Anisotropic friction behaviour of highly oriented pyrolytic graphite. Carbon 65, 53–62 (2013). https://doi.org/10.1016/j.carbon.2013.07.101

    Article  CAS  Google Scholar 

  77. Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82, 48–56 (1996). https://doi.org/10.1016/0257-8972(95)02623-1

    Article  CAS  Google Scholar 

  78. Nelson, B.A., King, W.P.: Modeling and simulation of the interface temperature between a heated silicon tip and a substrate. Nanoscale Microscale Thermophys. Eng. 12, 98–115 (2008). https://doi.org/10.1080/15567260701866769

    Article  CAS  Google Scholar 

  79. Cui, L., Lu, Z., Wang, L.: Environmental effect on the load-dependent friction behavior of a diamond-like carbon film. Tribol. Int. 82, 195–199 (2015). https://doi.org/10.1016/j.triboint.2014.10.014

    Article  CAS  Google Scholar 

  80. Chen, X., Zhang, C., Kato, T., Yang, X., Wu, S., Wang, R., Nosaka, M., Luo, J.: Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C: H and a-C:H: Si films. Nat. Commun. 8, 1675 (2017). https://doi.org/10.1038/s41467-017-01717-8

    Article  CAS  Google Scholar 

  81. Liu, Y., Zhang, B., Chen, L., Cao, Z., Shi, P., Liu, J., Zhang, J., Qian, L.: Perspectives of the friction mechanism of hydrogenated diamond-like carbon film in air by varying sliding velocity. Coatings 8, 331 (2018). https://doi.org/10.3390/coatings8100331

    Article  CAS  Google Scholar 

  82. Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002). https://doi.org/10.1021/ja0178618

    Article  CAS  Google Scholar 

  83. Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010). https://doi.org/10.1007/s11249-009-9566-8

    Article  CAS  Google Scholar 

  84. Bai, S., Onodera, T., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Takaba, H., Kubo, M., Miyamoto, A.: Friction reduction mechanism of hydrogen- and fluorine-terminated diamond-like carbon films investigated by molecular dynamics and quantum chemical calculation. J. Phys. Chem. C. 116, 12559–12565 (2012). https://doi.org/10.1021/jp300937n

    Article  CAS  Google Scholar 

  85. Chen, Y.-N., Ma, T.-B., Chen, Z., Hu, Y.-Z., Wang, H.: Combined effects of structural transformation and hydrogen passivation on the frictional behaviors of hydrogenated amorphous carbon films. J. Phys. Chem. C. 119, 16148–16155 (2015). https://doi.org/10.1021/acs.jpcc.5b04533

    Article  CAS  Google Scholar 

  86. Gao, G.T., Mikulski, P.T., Chateauneuf, G.M., Harrison, J.A.: The effects of film structure and surface hydrogen on the properties of amorphous carbon films. J. Phys. Chem. B. 107, 11082–11090 (2003). https://doi.org/10.1021/jp034544+

    Article  CAS  Google Scholar 

  87. Hayashi, K., Tezuka, K., Ozawa, N., Shimazaki, T., Adachi, K., Kubo, M.: Tribochemical reaction dynamics simulation of hydrogen on a diamond-like carbon surface based on tight-binding quantum chemical molecular dynamics. J. Phys. Chem. C. 115, 22981–22986 (2011). https://doi.org/10.1021/jp207065n

    Article  CAS  Google Scholar 

  88. Schall, J.D., Gao, G., Harrison, J.A.: Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C. 114, 5321–5330 (2010). https://doi.org/10.1021/jp904871t

    Article  CAS  Google Scholar 

  89. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009). https://doi.org/10.1038/nature07748

    Article  CAS  Google Scholar 

  90. Gao, G., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007). https://doi.org/10.1021/la062254p

    Article  CAS  Google Scholar 

  91. Kim, W.K., Falk, M.L.: Role of intermediate states in low-velocity friction between amorphous surfaces. Phys. Rev. B. 84, 165422 (2011). https://doi.org/10.1103/PhysRevB.84.165422

    Article  CAS  Google Scholar 

  92. Hauert, R.: An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991–1003 (2004). https://doi.org/10.1016/j.triboint.2004.07.017

    Article  CAS  Google Scholar 

  93. Donnet, C., Fontaine, J., Grill, A., Mogne, T.L.: The role of hydrogen on the friction mechanism of diamond-like carbon films. Tribol. Lett. 9, 137–142 (2001). https://doi.org/10.1023/A:1018800719806

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Advanced Storage Technology Consortium ASTC (Grant 2011-012), the National Science Foundation under Grant No. DMR-1107642, the National Science Foundation through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530), and by the Agence Nationale de la Recherche under Grant No. ANR-11- NS09-01 through the Materials World Network program. NSF Major Research Instrumentation Grant DMR-0923245 and use of the Scanning and Local Probe Facility of the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-1542153, are acknowledged. J.B.M. acknowledges support of a Graduate Research Supplement for Veterans from the Directorate for Mathematical and Physical Sciences at the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. McClimon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClimon, J.B., Hilbert, J., Lukes, J.R. et al. Nanoscale Run-In of Silicon Oxide-Doped Hydrogenated Amorphous Carbon: Dependence of Interfacial Shear Strength on Sliding Length and Humidity. Tribol Lett 68, 80 (2020). https://doi.org/10.1007/s11249-020-01319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01319-4

Keywords

Navigation