Skip to main content
Log in

Mechanisms of Solid–Gas Reactions: Reduction of Air Pollutants on Carbons

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ozone is a strong oxidizer and sulfur dioxide is a precursor to acid rain, both are air pollutants that can damage the respiratory tissues of animals and plants making them hazardous to the environment. They are isoelectronic valence O = X = O (X = S, O) molecules and their mechanism of reduction on carbons is similar. The solid–gas kinetics were studied in a flow system with a tubular reactor under differential and steady state conditions. Initial rates and product distribution were used to determine the stoichiometry of the reaction. The reduction of XO2 on carbons proceeds through a common primary mechanism with oxidized and reduced intermediates. The reactivity of the intermediates that were inserted on carbons (graphite, activated carbon, graphene oxide) modified by SO2 is selective with respect to aminolysis and thiolysis. A theoretical study of the chemisorption of SO2 on dehydrogenated pyrene as graphite active site model showed that at 900 °C the chemisorption occurs mainly on the diradical zigzag edge. Computational quantum chemistry calculations were carried out for the reduction of SO2 on graphite to produce elemental sulfur and CO2 using tetradehydrogenated-benzo[α]anthracene (TBA) as model. The mechanisms of the decarboxylation and sulfur transport steps were postulated. Ozonation of graphite showed that the 1,2,3-trioxolane decomposes to an oxyrene, eliminating O2. Both reactions, the SO2 and O3 with graphite, have the same experimental free energy of activation for the decarboxylation reaction. The results show that for SO2 the desulfurization has a much lower energetic demand than the decarboxylation route raising the important possibility of using the reaction of reduction of SO2 on carbons to reduce the acid rain, producing elemental sulfur as the main product, without increasing the greenhouse effect due to the formation of CO2.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Humeres E, Moreira RFPM, Peruch MGB (2004) Química Verde en Latinoamérica. In: Green Chemistry Series Eds. Tundo P, Rossi RH, Argentina 11:317–334.

  2. Lawrence GB, Shortle WC, David MB, Smith KT, Warby RAF, Lapenis AG (2012) Soil Sci Soc Am J 76:1407–1417

    CAS  Google Scholar 

  3. Bhardwaj M (2016) Chem Sci Rev & Let 5:21–26

    CAS  Google Scholar 

  4. Cui L, Liang J, Fu H, Zhang L (2020) Chemosphere 253:126491

    PubMed  CAS  Google Scholar 

  5. Mehta P (2015) J App Sci Res (Etawah India) 3:54–75

    CAS  Google Scholar 

  6. Coney D, Li M (2018) 2018) World Coal 2018–2050: World Energy Annual Report (Part 4. University of Utah, Department of Economics

    Google Scholar 

  7. Kohl AL, Nielsen R (1997) Sulfur Dioxide Removal. In: Gas Purification, Marsh H, Heintz EA, Rodriguez-Reinoso F, Eds. Gulf Publishing Company: Houston, USA.

  8. Humeres E, Moreira RFPM (2012) J Phys Org Chem 25:1012–1026

    CAS  Google Scholar 

  9. Humeres E, Moreira RFPM, Peruch MGB (2002) Carbon 40:751–760

    CAS  Google Scholar 

  10. Humeres E, Peruch MGB, Moreira RFPM, Schreiner WH (2003) J Phys Org Chem 16:824–830

    CAS  Google Scholar 

  11. Klein JM, Bultel Y, Pons M, Ozil P (2007) J Fuel Cell Sci Technol 4:425–434

    CAS  Google Scholar 

  12. Hittle L, Sharkey AG, Honalla M, Proctor A, Hercules DM, Morsi BI (1993) Fuel 72:771–773

    CAS  Google Scholar 

  13. Wilson K, Hardacre C, Baddeley CJ, Lüdecke J, Woodruff DP, Lambert RM (1997) Surface Sci 372:279–288

    CAS  Google Scholar 

  14. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1993) Handbook of X-ray Photoelectron Spectroscopy. Minnesota, USA, Physical Electronics

    Google Scholar 

  15. Pliego JR, Resende SM, Humeres E (2005) Chem Phys 314:127–133

    CAS  Google Scholar 

  16. Steudel Y, Steudel R, Wong MW (2002) Chem Eur J 8:217–228

    PubMed  CAS  Google Scholar 

  17. Zoller U, Shakkour E, Pastersky I (1994) Phosphorus Sulfur Silicon Relat Elem 95–96:453–456

    Google Scholar 

  18. Zoller U (1983) In: Hassner A (ed) Small Ring Heterocycles. Wiley, New York, pp 333–630

    Google Scholar 

  19. Zoller U, Shakkour E, Pastersky I, Stlenak S, Apeloig Y (1998) Tetrahedron 54:14283–14300

    CAS  Google Scholar 

  20. Nakayama J, Akimoto K (1994) (1994) Reactions of benzyne with sulfur compounds. Sulfur Reports 16:61–111

    CAS  Google Scholar 

  21. Nakayama J, Kashiwagi M, Yomoda R, Hoshino M (1987) Nippon Kagaku Kaishi 7:1424–1429

    Google Scholar 

  22. Humeres E, Debacher NA, Smaniotto A, Castro KM, Benetoli LOB, Souza EP, Moreira RPFM, Lopes CN, Schreiner WH, Canle M, Santaballa JA (2014) Langmuir 30:4301–4309

    PubMed  CAS  Google Scholar 

  23. Humeres E, Debacher NA, Moreira RFPM, Santaballa AJ, Canle MA (2017) J Phys Chem C 121:14649–14657

    CAS  Google Scholar 

  24. Humeres E, Castro KM, Smaniotto A, Lopes CN, Debacher NA, Moreira RFPM, Schreiner WH, Aliev AE (2014) J Phys Org Chem 27:344–351

    CAS  Google Scholar 

  25. Talyzin AV, Szabo T, Dekany I, Langenhorst F, Sokolov PS, Solozhenko VL (2003) J Phys Chem C 113:11279–11284

    Google Scholar 

  26. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Google Scholar 

  27. Khare BN, Wilhite P, Quinn RC, Chen B, Schingler RH, Tran B, Imanaka H, So CR, Bauschlicher CW, Meyyappan M (2004) J Phys Chem B 108:8166–8172

    CAS  Google Scholar 

  28. Coen CM, Keller B, Groening P, Schlapbach L (2002) J Appl Phys 92:5077–5083

    Google Scholar 

  29. Humeres E, Castro KM, Moreira RFPM, Schreiner WH, Aliev AE, Canle M, Santaballa JA, Fernandez I (2008) J Phys Org Chem 21:1035–1042

    CAS  Google Scholar 

  30. Smaniotto A, Humeres E, Debacher NA, Castro KM, Benetoli LOB, Schreiner WH, Canle M, Santaballa JA (2016) J Phys Org Chem 29:773–780

    CAS  Google Scholar 

  31. Moore JW, Pearson RG (1981) Kinetics and Mechanism. Wiley, New York, USA

    Google Scholar 

  32. Humeres E, Castro KM, Moreira RFPM, Peruch MGB, Schreiner WH, Aliev AE, Canle M, Santaballa JA, Fernandez I (2008) J Phys Chem C 112:581–589

    CAS  Google Scholar 

  33. Liu W-D, Chi C-C, Pai I-F, Wu A-T, Chung W-S (2002) J Org Chem 67:9267–9275

    PubMed  CAS  Google Scholar 

  34. Humeres E, Souza EP, Debacher NA, Moreira RFPM, Lopes CL, Pérez MIF, Santaballa JA, Canle M, Schreiner WH, Aliev AE (2015) Langmuir 31:164–170

    PubMed  CAS  Google Scholar 

  35. Moreira RFPM, Humeres E, Berger C, Fernandez MI, Santaballa JA, Canle M (2017) J Photochem Photobiol B 174:261–268

    Google Scholar 

  36. Humeres E, Canle M, Lopes CN, Santaballa JA, Debacher NA, Moreira RFPM, Safin V, Fernandez MI, Perez M (2020) J Photochem Photobiol B 202:111–675

    Google Scholar 

  37. Chen N, Yang RT (1998) Carbon 36:1061–1070

    CAS  Google Scholar 

  38. Yang FH, Yang RT (2003) Carbon 41:2149–2158

    CAS  Google Scholar 

  39. Balaban AT, Greer A, Liebman JF (2014) In Advances in Heterocyclic Chemistry Ch 3 Katritzky A. Ed New York Elsevier 113:111–142

    CAS  Google Scholar 

  40. Radovic LR, Bockrath B (2005) J Am Chem Soc 127:5917–5927

    PubMed  CAS  Google Scholar 

  41. Stein SE, Brown RL (1987) In: Liebman JF, Greenberg A (eds) Molecular structure and energetics. New York, VCH, vol 2, pp 37–66

  42. Humeres E, Peruch MGB, Moreira RFPM, Schreiner WH (2005) Int J Mol Sci 6:130–142

    CAS  Google Scholar 

  43. Brzostowska EM, Greer A (2004) J Org Chem 69:5483–5485

    PubMed  CAS  Google Scholar 

  44. Muller da Silva D, unpublished results.

  45. Humeres E, Tarnowski, MC, Brognoli R, Debacher NA (2018) 24th IUPAC Conference on Physical Organic Chemistry (ICPOC24) Faro, Portugal.

  46. Steudel R, Steudel Y, Wong MW (2003) Elemental sulfur and sulfur-rich compounds I. In: Steudel R (ed) Topics in current chemistry, vol 230. Springer, Berlin, pp 117–134

    Google Scholar 

  47. Castro KM (2015) Reatividade da grafite prístina e oxidada, modificada por SO2. Mecanismo de ozonização da grafite. PhD thesis. Universidade Federal de Santa Catarina, Brazil

  48. Lewars E (1996) J Mol Struct (Theochem) 360:67–80

    CAS  Google Scholar 

  49. Lewars E (2000) Can J Chem 78:297–306

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Brazilian Government Agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and both the Spanish Ministerio de Educación, Cultura y Deporte, DGU, Project PHB2009-0057-PC, and the regional government Xunta de Galicia (Project Grupo Potencial Crecemento (GPC) ED431B 2017/59) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo Humeres or J. Arturo Santaballa.

Ethics declarations

Ethical Approval

The first draft of the manuscript was written by Eduardo Humeres who performed the literature search and all authors commented on previous versions of the manuscript and data analysis. All authors critically revised the work and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humeres, E., Debacher, N.A., Moreira, R.F.P.M. et al. Mechanisms of Solid–Gas Reactions: Reduction of Air Pollutants on Carbons. Top Catal 63, 817–832 (2020). https://doi.org/10.1007/s11244-020-01318-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01318-8

Keywords

Navigation