Skip to main content
Log in

Exact expansions of Hankel transforms and related integrals

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The Hankel transform \(\mathcal {H}_n [f(x)](q)=\int _0^{\infty } \!\! \, x f(x) J_n(q x) \mathrm{d}x\) is studied for integer \(n\geqslant -1\) and positive parameter q. It is proved that the Hankel transform is given by uniformly and absolutely convergent series in reciprocal powers of q, provided special conditions on the function f(x) and its derivatives are imposed. It is necessary to underline that similar formulas obtained previously are in fact asymptotic expansions only valid when q tends to infinity. If one of the conditions is violated, our series become asymptotic series. The validity of the formulas is illustrated by a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Methods of evaluating asymptotics of other integrals can be found in [19, 20].

  2. The extension of Ramanujan’s master theorem for \(A \in (0,\pi ]\) was done in [23].

  3. All even-order derivatives are positive, while all odd-order derivatives are negative, or vice versa.

  4. For a special case \(a=c\), this sum is given by formula [27, 4.2.7.37].

  5. In a sum of three terms, the poles cancel each other.

  6. It corresponds to an alternative definition of the Hankel transform: \(\bar{\mathcal {H}}_\nu [f(x)](q) = \int _0^{\infty } \!\! f(x) J_\nu (q x) \,\mathrm{d}x\).

  7. We used the fact that \(xf(x)J_1(q x)|_{x=0} = xf(x)J_1(q x)|_{x=\infty } =0\).

  8. Taking into account that \(xf(x)J_\nu (q x)|_{x=0} = xf(x)J_\nu (q x)|_{x=\infty } =0\).

  9. Two particular cases with \(n=0\) and \(n=1\) were considered above (see Eqs. (19), (53)).

  10. See integrals (19), (21), (28), (51) and (69).

  11. The same is true for \(\Phi (t) = J_0(t)\), \(f(t) = t\cos t, t\sin t, tJ_\nu (t)\), etc.

References

  1. Tranter, C.J.: Integral Transforms in Mathematical Physics. Wiley, New York (1951)

    MATH  Google Scholar 

  2. Debnath, L., Bhatta, D.: Integral Transforms and Their Applications, 3rd edn. CRC Press, New York (2015)

    MATH  Google Scholar 

  3. Molière, G.: Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld. Z. Naturforschung 2a, 133 (1947)

    Article  Google Scholar 

  4. Molière, G.: Theorie der Streuung schneller geladener Teilchen II. Mehrfach- und Vielfachstreuung. Z. Naturforschung 3a, 78 (1948)

    Article  Google Scholar 

  5. Glauber, R.J.: In: W.E. Brittin and L.G. Dunham (ed.) Lectures in Theoretical Physics , Vol. 1 p. 315. Springer, New York (1959)

  6. Collins, P.D.B.: An Introduction to Regge Theory & High Energy Physics. Cambridge University Press, Cambridge (1977)

    Book  Google Scholar 

  7. Willis, H.F.: A formula for expanding an integral as a series. Philos. Mag. 39, 455 (1948)

    Article  MathSciNet  Google Scholar 

  8. Slonovskii, N.V.: Asymptotic expansions of Hankel transforms. Izv. Vyssh. Uchebn. Zaved. Mat. 5, 86 (1968)

    MathSciNet  Google Scholar 

  9. Handelsman, R.A., Lew, J.S.: Asymptotic expansion of a class of integral transforms with algebraically dominated kernels. J. Math. Anal. Appl. 35, 405 (1971)

    Article  MathSciNet  Google Scholar 

  10. MacKinnon, R.F.: The asymptotic expansion of Hankel transforms and related integrals. Math. Comput. 26, 515 (1972)

    Article  MathSciNet  Google Scholar 

  11. Wong, R.: Error bounds for asymptotis expansions of Hankel transforms. SIAM J. Math. Anal. 7, 799 (1976)

    Article  MathSciNet  Google Scholar 

  12. Wong, R.: Error bounds for asymptotis expansions of integrals. SIAM J. Math. Anal. 22, 401 (1980)

    MATH  Google Scholar 

  13. Wong, R.: Asymptotic expansions of Hankel transforms with logarithmic singularities. Comput. Math. Appl. 3, 271 (1977)

    Article  MathSciNet  Google Scholar 

  14. Zayed, A.I.: Asymptotic expansions of some integral transforms by using generalized functions. Trans. Am. Math. Soc. 272, 785 (1982)

    Article  MathSciNet  Google Scholar 

  15. Soni, K.: Asymptotic expansion of the Hankel transform with explicit remainder terms. Quart. Appl. Math. 40, 1 (1982)

    Article  MathSciNet  Google Scholar 

  16. Frenzen, C.L., Wong, R.: A note on asymptotic evaluation of some hankel transforms. Math. Comput. 45, 537 (1985)

    Article  MathSciNet  Google Scholar 

  17. Schetnikovich, E.K.: Asymptotic expansions of modified Hankel transform. Int. Trans. Spec. Fun. 16, 483 (2005)

    Article  MathSciNet  Google Scholar 

  18. Galapon, E.A., Martinez, K.M.L.: Exactification of the Poincare asymptotic expansion of the Hankel integral: spectacularly accurate asymptotic expansions and non-asymptotic scales. Proc. R. Soc. 470, 20130529 (2014)

    Article  MathSciNet  Google Scholar 

  19. Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover Publications, New York (1986)

    MATH  Google Scholar 

  20. Temme, N.M.: Asymptotic Methods for Integrals. World Scientific, Singapore (2015)

    MATH  Google Scholar 

  21. Hardy, G.H.: Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work, 3rd edn. Chelsea, New York (1978)

    MATH  Google Scholar 

  22. Amdeberham, T., Espinosa, J., Gonzalez, I., et al.: Ramanujan’s Master Theorem. Ramanujan J. 29, 103 (2012)

    Article  MathSciNet  Google Scholar 

  23. Claudhry, A.A., Qadir, A.: Extension of Hardy’s class for Ramanujan’s interpolation formula and master theorem with applications. J. Inequal. Appl. 2012, 52 (2012)

    Article  MathSciNet  Google Scholar 

  24. Higher Transcendental Functions. Vol. 1. By the staff of the Bateman manuscript project (A. Erdélyi, Editor, W. Magnus, F. Oberhettinger, F.G. Tricomi, Associates), McGraw-Hill Book Company, New York (1953)

  25. Higher Transcendental Functions. Vol. 2. By the staff of the Bateman manuscript project (A. Erdélyi, Editor, W. Magnus, F. Oberhettinger, F.G. Tricomi, Associates), McGraw-Hill Book Company, New York (1953)

  26. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 2, Special Functions. Gordon & Breach Science, New York (1986)

  27. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 1, Elementary Functions. Gordon & Breach Science, New York (1986)

  28. Higher Transcendental Functions. Vol. 3. By the staff of the Bateman manuscript project (A. Erdélyi, Editor, W. Magnus, F. Oberhettinger, F.G. Tricomi, Associates), McGraw-Hill Book Company, New York (1955)

  29. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  30. Gunderson, D.S.: Handbook of Mathematical Induction. Theory and Applications. Chapman and Hall/CRC, New York (2010)

    MATH  Google Scholar 

  31. Hsu, L.C.: Concerning an expansion formula for a type of integrals. Ann. Pol. Math. 11, 7 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kisselev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Here we calculate a series which defines integral (28). After using the relation

$$\begin{aligned} \Gamma (2m+2) = 2^{2m+1} \Gamma (m+1) \Gamma (m+3/2)/ \sqrt{\pi } , \end{aligned}$$
(A.1)

we find from (8) and (33)

$$\begin{aligned} H_3(q)&= \frac{2a}{\sqrt{\pi } q^3} \sum _{m=0}^\infty \frac{\Gamma (m+3/2)}{\Gamma (m+1)} \left( -\frac{a^2}{q^2}\right) ^{\!\!m} \sum _{k=0}^m \left( {\begin{array}{c}2m+1\\ 2k\end{array}}\right) \left( {\begin{array}{c}2k\\ k\end{array}}\right) \!\left( \frac{c^2}{4a^2}\right) ^{\!\!k} \nonumber \\&= \frac{2a}{\sqrt{\pi } q^3} \sum _{k=0}^\infty \frac{1}{(k!)^2} \left( \frac{c^2}{4a^2}\right) ^{\!\!k} \sum _{m=k}^\infty \frac{\Gamma (m+3/2)\,\Gamma (2m+2)}{\Gamma (m+1)\,\Gamma (2m+2-2k)} \left( -\frac{a^2}{q^2}\right) ^{\!\!m} . \end{aligned}$$
(A.2)

After putting \(m=n+k\), we find

$$\begin{aligned} H_3(q)&=\frac{2a}{\sqrt{\pi } q^3} \sum _{k=0}^\infty \frac{1}{(k!)^2} \left( -\frac{c^2}{4q^2}\right) ^{\!\!k} \nonumber \\&\quad \times \sum _{n=0}^\infty \frac{\Gamma (n+k+3/2)\,\Gamma (2n+2k+2)}{\Gamma (n+k+1)\,\Gamma (2n+2)} \left( -\frac{a^2}{q^2}\right) ^{\!\!n} . \end{aligned}$$
(A.3)

Using relation

$$\begin{aligned} \frac{\Gamma (n+k+3/2)\,\Gamma (2n+2k+2)}{\Gamma (n+k+1)\,\Gamma (2n+2)} = 2^{2k} \, \frac{[\Gamma (n+k+3/2)]^2}{\Gamma (n+3/2) \, n!} , \end{aligned}$$
(A.4)

we obtain (\(q > a+c\))

$$\begin{aligned} H_3(q)&= \frac{a}{q^3} \sum _{k=0}^\infty \frac{1}{(1)_k k!} \left( -\frac{c^2}{q^2}\right) ^{\!\!k} \sum _{n=0}^\infty \frac{[(3/2)_{n+k}]^2}{(3/2)_n n!} \left( -\frac{a^2}{q^2}\right) ^{\!\!n} \nonumber \\&= \frac{a}{q^3} \, F_4 \!\left( \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, 1, -\frac{a^2}{q^2}, -\frac{c^2}{q^2} \right) , \end{aligned}$$
(A.5)

where

$$\begin{aligned} F_4(\alpha , \beta , \gamma , \gamma ', x, y) = \sum _{n.m=0}^\infty \frac{(\alpha )_{m+n} (\beta )_{m+n}}{(\gamma )_{m} (\gamma ')_{n} \,m! \,n!} \, x^m y^n \end{aligned}$$
(A.6)

is the hypergeometric series of two variables [24]. It is the uniformly and absolutely convergence series for \(\sqrt{|x|} + \sqrt{|y|} < 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisselev, A.V. Exact expansions of Hankel transforms and related integrals. Ramanujan J 55, 349–367 (2021). https://doi.org/10.1007/s11139-020-00274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00274-x

Keywords

Mathematics Subject Classification

Navigation