Skip to main content
Log in

The Helmholtz–Weyl decomposition of \(L^r\) vector fields for two dimensional exterior domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a two-dimensional exterior domain with smooth boundary \(\partial \Omega \) and \(1< r < \infty \). Then \(L^r(\Omega )^2\) allows a Helmholtz–Weyl decomposition, i.e., for every \(\mathbf{u}\in L^r(\Omega )^2\) there exist \(\mathbf{h} \in X^r_{\tiny {\text{ har }}}(\Omega )\), \(w \in {\dot{H}}^{1,r}(\Omega )\) and \(p \in {\dot{H}}^{1,r}(\Omega )\) such that

$$\begin{aligned} \mathbf{u} = \mathbf{h} + \mathrm{rot}\, w + \nabla p. \end{aligned}$$

The function \(\mathbf{h}\) can be chosen alternatively also from \(V^r_{\tiny {\text{ har }}}(\Omega )\), another space of harmonic vector fields subject to different boundary conditions. These spaces \(X^r_{\tiny {\text{ har }}}(\Omega )\) and \(V^r_{\tiny {\text{ har }}}(\Omega )\) of harmonic vector fields are known to be finite dimensional. The above decomposition is unique if and only if \(1< r \leqq 2\), while in the case \(2< r < \infty \), uniqueness holds only modulo a one dimensional subspace of \(L^r(\Omega )^2\). The corresponding result for the three dimensional setting was proved in our previous paper, where in contrast to the two dimensional case, there are two threshold exponents, namely \(r=3/2\) and \(r =3\). In our two dimensional situation, \(r=2\) is the only critical exponent, which determines the validity of a unique Helmholtz–Weyl decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor Analysis and Applications. Springer, New York (1988)

    Book  Google Scholar 

  2. Bogovskiĭ, M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248, 1037–1040 (1979)

    MathSciNet  Google Scholar 

  3. Bogovskiĭ, M.E., Decomposition of \(L_p(\Omega ,{\mathbb{R}}^n)\) into the direct sum of subspaces of solenoidal and potential vector fields. Dokl. Akad. Nauk SSSR 286, 781–786 (1986) [Russian. English translation in Soviet Math. Dokl. 33, 161–165 1986]

  4. Foias, C., Temam, R.: Remarques sur les equations de Navier–Stokes stationaires et les phenomenes successifs de bifurcations. Ann. Scu. Norm. Super. Pisa 5, 29–63 (1978)

    MATH  Google Scholar 

  5. Fujiwara, D., Morimoto, H.: An \(L_r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

    Google Scholar 

  7. Geissert, M., Heck, H., Hieber, M., Sawada, O.: Weak Neumann implies Stokes. J. Reine Angew. Math. 669, 75–100 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Hieber, M., Saal, J.: The Stokes equation in the \(L^p\)-setting: well-posedness and regularity properties. In: Handbook of Math. Analysis in Mech. of Viscous Fluids, pp. 117-206, Springer, New York (2018)

  9. Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T.: A Characterization of harmonic \(L^r\)-vector fields in two dimensional exterior domains. J. Geom. Anal. (2019). https://doi.org/10.1007/s12220-019-00216-0

    Article  MATH  Google Scholar 

  10. Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T.: A characterization of harmonic \(L^r\)-vector fields in three dimensional exterior domains (submitted)

  11. Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T.: \(L^r\)-Helmholtz–Weyl decomposition in three dimensional exterior domains (submitted)

  12. Korobkov, M., Pileckas, K., Russo, R.: Solution of Leray’s problem for stationary Navier–Stokes equations in plane and axially symmetric domains. Ann. Math. 181, 769–807 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kozono, H., Sohr, H.: On a new class of generalized solutions for the Stokes equations in exterior domains. Ann. Scu. Norm. Super. Pisa 19, 155–181 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Kozono, H., Yanagisawa, T.: \(L^r\)-variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58, 1853–1920 (2009)

    Article  MathSciNet  Google Scholar 

  15. Kozono, H., Yanagisawa, T.: Leray’s problem on the stationary Navier–Stokes equations with inhomogeneous boundary data. Math. Z. 262, 27–39 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kozono, H., Yanagisawa, T.: Nonhomogeneous boundary value problems for stationary Navier–Stokes equations in a multiply connected bounded domain. Pacif. J. Math. 243, 127–150 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kozono, H., Yanagisawa, T.: Generalized Lax–Milgram theorem in Banach spaces and its application to the elliptic system of boundary value problems. Manuscr. Math. 141, 637–662 (2013)

    Article  MathSciNet  Google Scholar 

  18. Leray, J.: Etude de diverses équations intégrales non linéaires et de quelques problemes que pose l’Hydrodyamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  19. Miyakawa, T.: On nonstationary solutions of the Navier–Stokes equations in exterior domains. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Grudlehren der mathematische Wissenschaften. Springer, New York (1966)

    Book  Google Scholar 

  21. Robinson, J., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier–Stokes Equations. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  22. Seyfert, A.: The Helmholtz-Hodge decomposition in Lebesgue spaces on exterior domains and evolution equations on the whole real time axis. PhD Thesis, Technische Universität Darmstadt (2018)

  23. Simader, C.G., Sohr, H.: The weak Dirichlet and Neumann problem for the Laplacian in \(L^q\) for bounded and exterior domains. In: Kubec, M., Kufner. A., Opic, B., Rákosnik, D. (eds.), Nonlinear Analysis, Function Spaces and Applications, vol. 4, pp. 180–223 (1990)

  24. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in \(L^q\)-spaces for bounded and exterior domains. In: Galdi, G.P. (ed.) Mathematical Problems Relating to the Navier–Stokes Equations, Advances in Mathematics for Applied Sciences, pp. 1–35. World Scientific, Singapore (1992)

    MATH  Google Scholar 

  25. Simader, C.G., Sohr, H.: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics, Vol. 360, Longman (1996)

  26. Yoshida, Z., Giga, Y.: Remarks on spectra of operator rot. Math. Z. 204, 235–245 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of the project was partially supported by JSPS Fostering Joint Research Program (B)-18KK0072. The research of H. Kozono was partially supported by JSPS Grant-in-Aid for Scientific Research (S) 16H06339. The research of S. Shimizu was partially supported by JSPS Grant-in-Aid for Scientific Research (B)-16H03945, MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senjo Shimizu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieber, M., Kozono, H., Seyfert, A. et al. The Helmholtz–Weyl decomposition of \(L^r\) vector fields for two dimensional exterior domains. J Geom Anal 31, 5146–5165 (2021). https://doi.org/10.1007/s12220-020-00473-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00473-4

Keywords

Mathematics Subject Classification

Navigation