Skip to main content
Log in

A space exploration algorithm for multiparametric programming via Delaunay triangulation

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present a novel parameter space exploration algorithm for three classes of multiparametric problems, namely linear (mpLP), quadratic (mpQP), and mixed-integer linear (mpMILP). We construct subsets of the parameter space in the form of simplices through Delaunay triangulation to facilitate identification of the optimal partitions that describe the solution space. The presented exploration strategy prioritizes identifying volumetrically larger critical regions compared to existing methods. We demonstrate the exploration algorithm on an illustrative example, and compare the volumetrically identified parameter space against existing solvers on randomly generated problems in all three classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The example problem and its exact solution can be downloaded at http://paroc.tamu.edu/Examples/.

  2. The Chebyshev center is defined as the center of the largest “ball” that can fit in a polytope. The interested reader is refered to Boyd and Vandenberghe (2004) for details regarding the Chebyshev center.

  3. Recall \(\overrightarrow{\mathcal {A}}\) only includes the strongly active set.

  4. In most practical applications, \(\varTheta \) is usually described by box constraints, which yield \(2^q\) vertex points.

  5. Problems can be downloaded at http://paroc.tamu.edu/Examples/.

References

Download references

Acknowledgements

We acknowledge the financial support from the Texas A&M Energy Institute and the NSF Projects SusChEM (Grant No. 1705423) and INFEWS (Grant No. 1739977). We also acknowledge our colleague William W. Tso for his fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios N. Pistikopoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Details of the motivating example

The multiparametric quadratic programming problem used as the motivating example is defined as follows.

$$\begin{aligned} \begin{array}{lll} z^*(\theta )=&{}\underset{x}{\min }&{}(Qx+H\theta +c)^T x\\ &{} s.t. &{}Ax \le b+F\theta \\ &{} &{} \underline{x} \le x \le \bar{x}\\ &{} &{} \underline{\theta } \le \theta \le \bar{\theta } \end{array} \end{aligned}$$
(9)
$$\begin{aligned} Q= & {} \left[ \begin{array}{cccccccccc} 24.97 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 4 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 4.72 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1.1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0.11 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1.38 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 3.24 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1.3 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 14.37 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 759.27\\ \end{array}\right] \\ H= & {} \left[ \begin{array}{cc} 0 &{}\quad 0 \\ 1 &{}\quad 1 \\ 0 &{}\quad 1 \\ 0 &{}\quad -\,1 \\ 0 &{}\quad 0 \\ -\,1 &{}\quad -\,1 \\ 0 &{}\quad 0 \\ -\,1 &{}\quad 0 \\ 0 &{}\quad 0 \\ 0 &{}\quad 0 \\ \end{array}\right] \quad c = \left[ \begin{array}{c} 5\\ -\,3\\ 1\\ -\,2\\ 2\\ 3\\ 4\\ 3\\ 5\\ 1\\ \end{array}\right] \end{aligned}$$
$$\begin{aligned} A= & {} \left[ \begin{array}{cccccccccc} 0.14 &{}\quad 0.21 &{}\quad -\,0.33 &{}\quad 0.2 &{}\quad 0 &{}\quad -\,0.52 &{}\quad -\,0.24 &{}\quad 0 &{}\quad -\,0.5 &{}\quad 0.26 \\ -\,0.64 &{}\quad -\,0.05 &{}\quad -\,0.41 &{}\quad -\,0.24 &{}\quad 0 &{}\quad -\,0.3 &{}\quad 0.3 &{}\quad 0.14 &{}\quad 0 &{}\quad 0.21 \\ -\,0.57 &{}\quad -\,0.12 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0.31 &{}\quad 0 &{}\quad 0 &{}\quad -\,0.54 \\ 0 &{}\quad 0 &{}\quad 0.07 &{}\quad -\,0.69 &{}\quad 0 &{}\quad 0.36 &{}\quad 0.44 &{}\quad 0.17 &{}\quad 0 &{}\quad 0.25 \\ 0.35 &{}\quad 0 &{}\quad -\,0.21 &{}\quad 0.55 &{}\quad 0 &{}\quad -\,0.18 &{}\quad 0 &{}\quad -\,0.56 &{}\quad 0.19 &{}\quad 0.03 \\ 0 &{}\quad -\,0.3 -\,0.59 &{}\quad -\,0.38 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\,0.64 0 &{}\quad 0 &{}\quad &{}\quad \\ 0.08 &{}\quad -\,0.63 &{}\quad -\,0.45 &{}\quad 0 &{}\quad -\,0.33 &{}\quad -\,0.25 &{}\quad 0 &{}\quad -\,0.23 &{}\quad 0.15 &{}\quad 0 \\ 0.24 &{}\quad -\,0.43 &{}\quad -\,0.17 &{}\quad 0.28 &{}\quad -\,0.51 &{}\quad -\,0.23 &{}\quad -\,0.36 &{}\quad 0.34 &{}\quad 0 &{}\quad 0.28\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -\,0.17 &{}\quad -\,0.03 &{}\quad 0.44 &{}\quad 0 &{}\quad 0.22 &{}\quad -\,0.72 &{}\quad 0.19 \\ 0 &{}\quad 0 &{}\quad -\,0.61 &{}\quad -\,0.28 &{}\quad 0 &{}\quad 0.3 &{}\quad 0.41 &{}\quad -\,0.39 &{}\quad -\,0.37 &{}\quad 0 \\ -\,0.14 &{}\quad 0 &{}\quad -\,0.53 &{}\quad 0 &{}\quad 0.14 &{}\quad 0.11 &{}\quad 0 &{}\quad -\,0.76 &{}\quad -\,0.29 &{}\quad 0.026 \\ 0 &{}\quad -\,0.44 &{}\quad -\,0.02 &{}\quad 0 &{}\quad -\,0.39 &{}\quad 0 &{}\quad -\,0.17 &{}\quad 0.4 &{}\quad -\,0.51 &{}\quad 0 \\ 0 &{}\quad 0.21 &{}\quad -\,0.11 &{}\quad -\,0.66 &{}\quad -\,0.14 &{}\quad 0.43 &{}\quad 0.15 &{}\quad 0.47 &{}\quad -\,0.05 &{}\quad -\,0.25 \\ 0 &{}\quad -\,0.01 &{}\quad -\,0.37 &{}\quad -\,0.35 &{}\quad -\,0.29 &{}\quad -\,0.01 &{}\quad 0.36 &{}\quad 0.02 &{}\quad 0 &{}\quad -\,0.17 \\ 0 &{}\quad 0.32 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\,0.55 &{}\quad 0.34 &{}\quad 0.44 &{}\quad -\,0.24 &{}\quad 0.36 \\ \end{array}\right] \\ b= & {} \left[ \begin{array}{c} 7.57 \\ 10.72 \\ 5.47 \\ 9.26 \\ 12.32 \\ 8.47 \\ 5.22 \\ 6.89 \\ 3.70 \\ 6.22 \\ 8.43 \\ 4.74 \\ 3.74 \\ 3.05 \\ 5.68 \\ \end{array}\right] \quad F = \left[ \begin{array}{cc} -\,0.38 &{}\quad 0 \\ 0 &{}\quad -\,0.34 \\ 0.46 &{}\quad -\,0.25 \\ -\,0.33 &{}\quad 0 \\ 0.38 &{}\quad -\,0.01 \\ 0 &{}\quad 0 \\ 0 &{}\quad 0.39 \\ -\,0.11 &{}\quad 0 \\ 0.41 &{}\quad 0 \\ 0 &{}\quad -\,0.04 \\ 0 &{}\quad 0.09 \\ 0 &{}\quad -\,0.45 \\ 0 &{}\quad 0.06 \\ 0.59 &{}\quad -\,0.38 \\ -\,0.27 &{}\quad -\,0.15 \\ \end{array}\right] \\ \underline{x}= & {} \left[ \begin{array}{cc} -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ -\,1E7 \\ \end{array}\right] \quad \bar{x}= \left[ \begin{array}{cc} 1E7 \\ 1E7 \\ 1E7 \\ 1E7 \\ 1E7 \\ 1E7 \\ 1E7 \\ 1E7 \\ 1E7 \\ 1E7 \end{array}\right] \quad \underline{\theta } = \left[ \begin{array}{c} -\,10 \\ -\,10\end{array}\right] \quad \bar{\theta }= \left[ \begin{array}{c} 10 \\ 10 \end{array}\right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnak, B., Katz, J. & Pistikopoulos, E.N. A space exploration algorithm for multiparametric programming via Delaunay triangulation. Optim Eng 22, 555–579 (2021). https://doi.org/10.1007/s11081-020-09535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09535-6

Keywords

Navigation