Skip to main content
Log in

Surface wave spectral properties of centimeter to decameter wavelengths: variable spectral slope and non-equilibrium spectrum

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Understanding the wave properties in centimeter to decameter (cmDm) wavelength range is of great interest to ocean remote sensing and air-sea interaction. For more than six decades, cmDm waves are generally considered to be in the equilibrium range, and its spectral function has a constant slope: − 5 or − 4 in the 1D frequency spectrum and − 3 or − 2.5 in the 1D wavenumber spectrum. Some variations of the equilibrium spectrum model include varying the frequency spectral slope from − 4 to − 5 at some multiple of the spectral peak frequency, or incorporating a threshold velocity in the reference wind speed. Extensive efforts are then devoted to quantifying the spectral coefficient of the equilibrium spectrum function. This paper emphasizes that the observed wave spectral slope in the ocean is mostly non-constant. Therefore, the wave properties in field observations are significantly different from those inferred from assuming a constant spectral slope. The variable spectral slope is indicative of a non-equilibrium nature of ocean surface waves. Furthermore, from signal-to-noise consideration, surface slope is much more suited than elevation for evaluating the spectral slope and for quantifying the cmDm wave properties. Microwave sensors are excellent instruments for providing the ocean surface slope measurements. Several large datasets of lowpass-filtered mean square slope (LPMSS) have been reported recently. Combining the LPMSS observations with a spectrum function that accommodates a variable spectral slope, several quantitative results on the variable spectral slope and cmDm wave properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Datasets used in this analysis are given in the references cited. The NDBC data used in this paper are archived at http://www.ndbc.noaa.gov/data_availability/data_avail.php?station=46035. The NOAA HWIND legacy data are archived at http://www.rms.com/perils/hwind/legacy-archive/.

References

  • Bell MM, Montgomery MT, Emanuel KA (2012) Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J Atmos Sci 69:3197–3122

    Google Scholar 

  • Black PG, D’Asaro EA, Drennan WM, French JR, Niiler PP, Sanford TB, Terrill EJ, Walsh EJ, Zhang JA (2007) Air-sea exchange in hurricanes: synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bulle Am Meteorol Soc 88:357–374

    Google Scholar 

  • Cox CS, Munk W (1954) Statistics of the sea surface derived from sun glitter. J Mar Res 13:198–227

    Google Scholar 

  • Donelan, MA (1979) On the fraction of wind momentum retained by waves. Marine Forecasting, J. C. J. Nihoul (ed.), Elsevier Publ., 141–159

  • Donelan MA, Hamilton J, Hui WH (1985) Directional spectra of wind-generated waves. Phil Trans Roy Soc Lond A315:509–562

    Google Scholar 

  • Fan Y, Ginis I, Hara T, Wright CW, Walsh EJ (2009) Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J Phys Oceanogr 39:2097–2116

    Google Scholar 

  • Felizardo F, Melville WK (1995) Correlations between ambient noise and the ocean surface wave field. J Phys Oceanogr 25:513–532

    Google Scholar 

  • Forristall GZ (1981) Measurements of a saturated range in ocean wave spectra. J Geophys Res 86:8075–8084. https://doi.org/10.1029/JC086iC09p08075

    Article  Google Scholar 

  • Frasier SJ, Liu Y, McIntosh RE (1998) Space-time properties of radar sea spikes and their relation to wind and wave conditions. J Geophys Res 103:18745–18757

    Google Scholar 

  • García-Nava H, Ocampo-Torres FJ, Osuna P, Donelan MA (2009) Wind stress in the presence of swell under moderate to strong wind conditions. J Geophys Res 114:C12008. https://doi.org/10.1029/2009JC005389

    Article  Google Scholar 

  • Gleason S (2013) Space based GNSS scatterometry: ocean wind sensing using empirically calibrated model. IEEE Trans Geosci Rem Sens 51:4853–4863

    Google Scholar 

  • Gleason S, Zavorotny V, Hrbek S, PopStefanija I, Walsh E, Masters D, Grant M (2018) Study of surface wind and mean square slope correlation in hurricane Ike with multiple sensors. IEEE J Sel Topics Appl Earth Observ in Rem Sens 11:1975–1988

    Google Scholar 

  • Hasselmann K et al (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsch Hydrogr Z Suppl A8(12):95pp

  • Hasselmann K, Ross DB, Müller P, Sell W (1976) A parametric wave prediction model. J Phys Oceanogr 6:200–228

    Google Scholar 

  • Holland GJ (1980) An analytic model of the wind and pressure profiles in hurricane. Mon Wea Rev 108:1212–1218

    Google Scholar 

  • Holland GJ, Belanger JI, Fritz A (2010) A revised model for radial profiles of hurricane winds. Mon Wea Rev 136:4393–4401

    Google Scholar 

  • Holthuijsen LH, Powell MD, Pietrzak JD (2012) Wind and waves in extreme hurricanes. J Geophys Res 117:C09003

    Google Scholar 

  • Hwang PA (1997) A study of the wavenumber spectra of short water waves in the ocean. Part 2: Spectral model and mean square slope. J Atmos and Oceanic Tech 14:1174–1186

    Google Scholar 

  • Hwang PA (2005) Wave number spectrum and mean square slope of intermediate-scale ocean surface waves. J Geophys Res 110:C10029

    Google Scholar 

  • Hwang PA (2007) Spectral signature of wave breaking in surface wave components of intermediate-length scale. J Mar Sys 66:28–37

    Google Scholar 

  • Hwang PA (2018) High wind drag coefficient and whitecap coverage derived from microwave radiometer observations in tropical cyclones. J Phys Oceanogr 48:2221–2232. https://doi.org/10.1175/JPO-D-18-0107.1

    Article  Google Scholar 

  • Hwang PA, Fan Y (2017) Effective fetch and duration of tropical cyclone wind fields estimated from simultaneous wind and wave measurements: surface wave and air-sea exchange computation. J Phys Oceanogr 47:447–470. https://doi.org/10.1175/JPO-D-16-0180.1

    Article  Google Scholar 

  • Hwang PA, Fan Y (2018) Low-frequency mean square slopes and dominant wave spectral properties: toward tropical cyclone remote sensing. IEEE Trans Geos Rem Sens 56:7359–7368. https://doi.org/10.1109/TGRS.2018.2850969

    Article  Google Scholar 

  • Hwang PA, Wang DW (2001) Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J Phys Oceanogr 31:1346–1360

    Google Scholar 

  • Hwang PA, Wang DW (2004a) An empirical investigation of source term balance of small scale surface waves. Geophys Res Lett 31:L15301. https://doi.org/10.1029/2004GL020080

    Article  Google Scholar 

  • Hwang PA, Wang DW (2004b) Field measurements of duration limited growth of wind-generated ocean surface waves at young stage of development. J Phys Oceanogr 34:2316–2326

    Google Scholar 

  • Hwang PA, Wang DW, Walsh EJ, Krabill WB, Swift RN (2000) Airborne measurements of the directional wavenumber spectra of ocean surface waves. Part 1. Spectral slope and dimensionless spectral coefficient. J Phys Oceanogr 30:2753–2767

    Google Scholar 

  • Hwang PA, Sletten MA, Toporkov JV (2008) Analysis of radar sea return for breaking wave investigation. J Geophys Res 113:C02003. https://doi.org/10.1029/2007JC004319

    Article  Google Scholar 

  • Hwang PA, García-Nava H, Ocampo-Torres FJ (2011) Observations of wind wave development in mixed seas and unsteady wind forcing. J Phys Oceanogr 41(12):2343–2362. https://doi.org/10.1175/JPO-D-11-044.1

  • Hwang PA, Ocampo-Torres FJ, García-Nava H (2012) Wind sea and swell separation of 1D wave spectrum by a spectrum integration method. J Atmos Ocean Technol 29:116–128. https://doi.org/10.1175/JTECH-D-11-00075.1

    Article  Google Scholar 

  • Hwang PA, Burrage DM, Wang DW, Wesson JC (2013) Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations. J Atmos Ocean Technol 30:2168–2188. https://doi.org/10.1175/JTECH-D-12-00239.1

    Article  Google Scholar 

  • Hwang PA, Fan Y, Ocampo-Torres FJ, García-Nava H (2017) Ocean surface wave spectra inside tropical cyclones. J Phys Oceanogr 47:2293–2417. https://doi.org/10.1175/JPO-D-17-0066.1

    Article  Google Scholar 

  • Hwang PA, Reul N, Meissner T, Yueh SH (2019) Whitecap and wind stress observations by microwave radiometers: global coverage and extreme conditions. J Phys Oceanogr 49:2291–2307. https://doi.org/10.1175/JPO-D-19-0061.1

    Article  Google Scholar 

  • Janssen JAM (1997) Does wind stress depend on sea-state or not? – a statistical error analysis of HEXMAX data. Bound-Layer Meteorol 83:479–503

    Google Scholar 

  • Jarosz E, Mitchell DA, Wang DW, Teague WJ (2007) Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science 315:1707–1709

    Google Scholar 

  • Katzberg SJ, Dunion J (2009) Comparison of reflected GPS wind speed retrievals with dropsondes in tropical cyclones. Geophys Res Lett 36:L17602. https://doi.org/10.1029/2009GL039512

    Article  Google Scholar 

  • Katzberg SJ, Dunion J, Ganoe GG (2013) The use of reflected GPS signals to retrieve ocean surface wind speeds in tropical cyclones. Radio Sci 48:371–387. https://doi.org/10.1002/rds.20042

    Article  Google Scholar 

  • Kitaigorodskii A (1983) On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J Phys Oceanogr 13:816–827

    Google Scholar 

  • Klotz BW, Uhlhorn EW (2014) Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J Atmos Ocean Technol 31:2392–2408. https://doi.org/10.1175/JTECH-D-14-00028.1

    Article  Google Scholar 

  • Lenain L, Melville WK (2017) Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves. J Phys Oceanogr 47:2123–2138

    Google Scholar 

  • Meissner T, Wentz FJ (2009) Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans Geosci Rem Sens 47:3065–3083

    Google Scholar 

  • Meissner T, Ricciardulli L, Wentz F (2014) The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J Geophys Res 119:6499–6522. https://doi.org/10.1002/2014JC009837

    Article  Google Scholar 

  • Meissner T, Ricciardulli L, Wentz F (2017) Capability of the SMAP mission to measure ocean surface winds in storms. Bull Am Meteorol Soc 98:1660–1677

    Google Scholar 

  • Merzi N, Graf WH (1985) Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann Geophys 3:473–478

  • Moon I-J, Ginis I, Hara T, Tolman HL, Wright CW, Walsh EJ (2003) Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J Phys Oceanogr 33:1680–1706

    Google Scholar 

  • Ocampo-Torres FJ, García-Nava H, Durazo R, Osuna P, Díaz Méndez GM, Graber HC (2011) The INTOA experiment: a study of ocean-atmosphere interactions under moderate to strong offshore winds and opposing swell conditions in the Gulf of Tehuantepec, Mexico. Bound-Layer Meteorol 138:433–451. https://doi.org/10.1007/s10546-010-9561-5

    Article  Google Scholar 

  • Phillips OM (1958) The equilibrium range in the spectrum of wind generated waves. J Fluid Mech 4:785–790

    Google Scholar 

  • Phillips OM (1985) Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J Fluid Mech 156:505–531

    Google Scholar 

  • Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S. A Kitaigorodskii J Geophys Res 69:5181–5190

    Google Scholar 

  • Powell MD (2006) Drag coefficient distribution and wind speed dependence in tropical cyclones. Final Report to the NOAA JHT Program, 26 pp.

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Google Scholar 

  • Resio DT, Long CE, Vincent CL (2004) Equilibrium-range constant in wind-generated wave spectra. J Geophys Res 109:C01018. https://doi.org/10.1029/2003JC001788

    Article  Google Scholar 

  • Reul N, Tenerelli J, Chapron B, Vandemark D, Quilfen Y, Kerr Y (2012) SMOS satellite L-band radiometer: a new capability for ocean surface remote sensing in hurricanes. J Geophys Res 117:C02006. https://doi.org/10.1029/2011JC007474

    Article  Google Scholar 

  • Reul N, Chapron B, Zabolotskikh E, Donlon C, Quilfen Y, Guimbard S, Piolle JF (2016) A revised L-band radio-brightness sensitivity to extreme winds under tropical cyclones: the five year SMOS-storm database. Rem Sens Environ 180:274–291. https://doi.org/10.1016/j.rse.2016.03.011

    Article  Google Scholar 

  • Romero L, Melville WK (2010) Airborne observations of fetch-limited waves in the gulf of Tehuantepec. J Phys Oceanogr 40:441–465

    Google Scholar 

  • Romero L, Melville WK, Kleiss JM (2012) Spectral energy dissipation due to surface wave breaking. J Phys Oceanogr 42:1421–1444. https://doi.org/10.1175/JPO-D-11-072.1

    Article  Google Scholar 

  • Ruf CS, Atlas R, Chang PS, Clarizia MP, Garrison JL, Gleason S, Katzberg SJ, Jelenak Z, Johnson JT, Majumdar SJ, O’Brien A, Posselt DJ, Ridley AJ, Rose RJ, Zavorotny VU (2016) New ocean winds satellite mission to probe hurricanes and tropical convection. Bull Amer Meteor Soc 97:385–395. https://doi.org/10.1175/BAMS-D-14-00218.1

    Article  Google Scholar 

  • Sapp JW, Alsweiss SO, Jelenak A, Chang PS, Carswell J (2019) Stepped frequency microwave radiometer wind-speed retrieval improvements. Rem Sens 11:214. https://doi.org/10.3390/rs11030214

    Article  Google Scholar 

  • Takagaki N, Takane K, Kumamaru H, Suzuki N, Komori S (2018) Laboratory measurements of an equilibrium-range constant for wind waves at extremely high wind speeds. Dyna Atmos and Oceans 84:22–32. https://doi.org/10.1016/j.dynatrace.2018.08.003

    Article  Google Scholar 

  • Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, Williams AJ, Hwang PA, Kitaigorodskii SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26:792–807

    Google Scholar 

  • Trokhimovski YG, Irisov VG (2000) The analysis of wind exponents retrieved from microwave radar and radiometric measurements. IEEE Trans Geosci Rem Sens 38:470–479

    Google Scholar 

  • Walsh EJ, Wright CW, Vandemark D, Krabill WB, Garcia AW, Houston SH, Murillo ST, Powell MD, Black PG, Marks FD (2002) Hurricane directional wave spectrum spatial variation at landfall. J Phys Oceanogr 32:1667–1684

    Google Scholar 

  • Wright JW (1966) Backscattering from capillary waves with application to sea clutter. IEEE Trans Antennas Propag 14:749–754

    Google Scholar 

  • Wright JW (1968) A new model for sea clutter. IEEE Trans Antennas Propag 16:217–223

    Google Scholar 

  • Wright CW, Walsh EJ, Vandemark D, Krabill WB, Garcia AW, Houston SH, Powell MD, Black PG, Marks FD (2001) Hurricane directional wave spectrum spatial variation in the open ocean. J Phys Oceanogr 31:2472–2488

    Google Scholar 

  • Young IR (1998) Observations of the spectra of hurricane generated waves. Ocean Eng 25:261–276

    Google Scholar 

  • Young IR (2006) Directional spectra of hurricane wind waves. J Geophys Res 111:C08020

    Google Scholar 

  • Yueh SH, Dinardo SJ, Fore AG, Li FK (2010) Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans Geos Rem Sens 48:3087–3100

    Google Scholar 

  • Yueh SH, Tang W, Fore AG, Neumann G, Hayashi A, Freedman A, Chaubell J, Lagerloef GSE (2013) L-band passive and active microwave geophysical model functions of ocean surface winds and applications to Aquarius retrieval. IEEE Trans Geos Rem Sens 51:4619–4632

    Google Scholar 

  • Yueh SH, Fore AG, Tang W, Hayashi A, Stiles B, Reul N, Weng Y, Zhang F (2016) SMAP L-band passive microwave observations of ocean surface wind during severe storms. IEEE Trans Geos Rem Sens 54:7339–7350

    Google Scholar 

Download references

Acknowledgments

Comments and suggestions from two reviewers have greatly enhanced the quality and clarity of the presentation. U.S. Naval Research Laboratory Publication Number JA/7260—20-0590.

Code availability

The processing codes and data segments can also be obtained by contacting the corresponding author.

Funding

This work is sponsored by the Office of Naval Research ((Funding Doc. No. N0001416WX00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Hwang.

Additional information

Responsible Editor: Robert E Jensen

This article is part of the Topical Collection on the 16th International Workshop on Wave Hindcasting and Forecasting in Melbourne, AU, November 10–15, 2019

Appendices

Appendix 1. The G (general) wind wave spectrum model

The G model is given as:

$$ S\left(\omega \right)=\alpha {g}^2{\omega}_p^{-5}{\varsigma}^{-{s}_f}\exp \left[-\frac{s_f}{4}{\varsigma}^{-4}\right]{\gamma}^{\Gamma};\Gamma =\exp \left[-\frac{{\left(1-\varsigma \right)}^2}{2{\sigma}^2}\right];\varsigma =\frac{\omega }{\omega_p}. $$
(A1)

The associated spectral parameters vary with sf and ω#:

$$ {\displaystyle \begin{array}{l}\alpha ={\alpha}_1\left[1-0.3\tanh \left(0.1{\omega}_{\#}\right)\right]\\ {}\gamma ={\gamma}_1\left[1-0.5\tanh \left(0.1{\omega}_{\#}\right)\right]\\ {}\sigma ={A}_{\sigma }+{a}_{\sigma}\log \left({\omega}_{\#}\right)\end{array}}, $$
(A2)

where

$$ {\displaystyle \begin{array}{l}{\alpha}_1={A}_{\alpha }{\omega}_{\#}^{a_{\alpha }}\\ {}{\gamma}_1={A}_{\gamma }+{a}_{\gamma}\log \left({\omega}_{\#}\right)\end{array}} $$
(A3)

The coefficients Aα, aα, Aγ, aγ, Aσ, and aσ are functions of sf:

$$ {\displaystyle \begin{array}{l}{A}_{\alpha }=1.30\times {10}^{-3}{s}_f+1.64\times {10}^{-3},\\ {}{a}_{\alpha }=4.83\times {10}^{-1}{s}_f-1.49,\\ {}{A}_{\gamma }=4.42\times {10}^{-1}{s}_f+3.93\times {10}^{-1},\\ {}{a}_{\gamma }=-3.63{s}_f+19.74,\\ {}{A}_{\sigma }=-5.39\times {10}^{-2}{s}_f+3.44\times {10}^{-1},\\ {}{a}_{\sigma }=2.05\times {10}^{-9}{s}_f+5.5\times {10}^{-2}.\end{array}} $$
(A4)

Appendix 2. Parametric models of TC wind and wave fields

The wind speed parametric model is based on the modified Rankine vortex model (Holland 1980; Holland et al. 2010). To account for the wind field asymmetry, the vortex wind speed is normalized by U10mϕ, which is the maximum wind speed along a radial transect along a given azimuth angle ϕ,

$$ \kern0em \frac{U_{10}\left(r,\phi \right)}{U_{10\mathrm{m}\phi }}=\left\{\begin{array}{cc}{r}_{\ast },& {r}_{\ast}\le 1\\ {}{r}_{\ast}^{-0.5},& {r}_{\ast }>1\end{array}\right., $$
(B1)

where r is the radial distance from the TC center; the normalized radial distance is r*=r/rm; the azimuth angle ϕ is measured from the TC heading, increasing counterclockwise (CCW). Based on examination of archived NOAA HWIND 2D wind fields in several historical TCs, the following formula is used for U10mϕ:

$$ \kern0em \frac{U_{10\mathrm{m}\phi }}{U_{10\mathrm{m}}}=1-{a}_{1U}\left[1-\cos \left(\phi -{\phi}_m\right)\right], $$
(B2)

where ϕm is the azimuth angle of the location of the overall maximum wind speed U10m; the U10m location is mostly in the right-hand side relative to the TC heading, with higher probability in the right-front quadrant (ϕ between 270 and 360°) than the right-back quadrant (ϕ between 180 and 270°). The wind field asymmetry factor a1U varies mostly between about 0.1 and 0.2.

For the wave spectrum computation, the most useful characteristic wave parameter is ω#. In the TC wave parametric model, it is given in the normalized form: ω* = ω#/U10m; the prominent feature of ω*(ϕ) is the sinusoidal variation:

$$ {\omega}_{\ast }={a}_0\left({r}_{\ast}\right)+{a}_1\left({r}_{\ast}\right)\cos \left[\phi +\delta \left({r}_{\ast}\right)\right]. $$
(B3)

The coefficients a0, a1, and δ vary with r*, and they are empirically determined from the simultaneous wind and wave measurements collected in hurricane reconnaissance and research missions

$$ \kern0em {a}_0=\left\{\begin{array}{cc}0.0056{r}_{\ast },& {r}_{\ast}\le 1\\ {}0.0056{r}_{\ast}^{-0.5},& 1<{r}_{\ast}\le 3.3\\ {}0.03,& 3.3<{r}_{\ast}\end{array}\right.. $$
(B4)
$$ \kern0em \frac{a_1}{a_0}=\left\{\begin{array}{cc}-0.1,& {r}_{\ast}\le 1\\ {}-0.1{r}_{\ast}^{-1/3},& 1<{r}_{\ast}\le 2\\ {}-0.27,& 2<{r}_{\ast}\end{array}\right.. $$
(B5)
$$ \kern0em \delta =\left\{\begin{array}{cc}-60+240\left(1-{r}_{\ast}\right),& {r}_{\ast}\le 1.1\\ {}-80{r}_{\ast}^{-1/3},& 1.1<{r}_{\ast}\end{array}\right.. $$
(B6)

More details of the parametric functions of U10 and ω# inside TCs are given in Hwang and Fan (2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, P.A. Surface wave spectral properties of centimeter to decameter wavelengths: variable spectral slope and non-equilibrium spectrum. Ocean Dynamics 70, 1267–1279 (2020). https://doi.org/10.1007/s10236-020-01390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01390-4

Keywords

Navigation