Skip to main content
Log in

Tribo–Mechanical Properties of HVOF-Sprayed NiMoAl-Cr2AlC Composite Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The tribo-mechanical properties of NiMoAl-Cr2AlC MAX phase composite coatings on stainless steel substrate have been investigated. NiMoAl with different amounts of Cr2AlC (10, 20, 50 and 100 wt.%) were prepared by turbo-mixing and deposited by High-Velocity Oxy-Fuel (HVOF) method on stainless steel substrate. The phase composition, microstructure, chemical composition, tribological and mechanical properties of the coatings were analyzed using x-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy-Dispersive x-ray analysis (EDAX), pin-on-disk wear testing rig and nanohardness tester, respectively. The worn surfaces were analyzed by metallurgical optical microscope, FESEM and three-dimensional surface profiler to understand the wear behavior in detail. The addition of the Cr2AlC MAX phase in NiMoAl enhances the mechanical properties and reduces the surface roughness and porosity. NiMoAl-20 wt.% Cr2AlC and Cr2AlC coatings containing equal amounts of oxygen and carbon in the tribofilm show the low coefficient of friction (COF) and wear rate. The addition of the Cr2AlC MAX phase in the NiMoAl matrix up to 20 wt.% reduces the wear rate by one order of magnitude and enhances the coating life by 7000 twist fatigue cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.M. Taylor, Automobile Engine Tribology—Design Considerations for Efficiency and Durability, Wear, 1998, 221(1), p 1-8

    CAS  Google Scholar 

  2. B.K. Prasad, Sliding Wear Response of a Grey Cast Iron: Effects of Some Experimental Parameters, Tribol. Int., 2011, 44(5), p 660-667

    CAS  Google Scholar 

  3. V. Goyal, S.K. Sharma, and B.V. Kumar, Effect of Lubrication on Tribological Behaviour of Martensitic Stainless Steel, Mater. Today Proc., 2015, 2(4-5), p 1082-1091

    Google Scholar 

  4. D.S. Codd, Automotive Mass Reduction with Martensitic Stainless Steel. SAE Technical Paper; 2011

  5. D.J. Young, High Temperature Oxidation and Corrosion of Metals, Vol 1, Elsevier, Amsterdam, 2008

    Google Scholar 

  6. Metals, Special. “High-Performance Alloys for Resistance to Aqueous Corrosion,” SM Aqueous Corrosion Book, 2000, p. 28

  7. J.R. Davis, Ed., Nickel, Cobalt, and Their Alloys, ASM international, 2000

  8. P. Andersson, J. Tamminen, and C.E. Sandström, Piston Ring Tribology: A Literature Survey, VTT, Espoo, 2002

    Google Scholar 

  9. M.L. Parucker, A.N. Klein, C. Binder, W. Ristow Junior, and R. Binder, Development of Self-Lubricating Composite Materials of Nickel with Molybdenum Disulfide, Graphite and Hexagonal Boron Nitride Processed by Powder Metallurgy: Preliminary Study, Mater. Res., 2014, 17, p 180-185

    CAS  Google Scholar 

  10. H.E. Sliney, Solid Lubricant Materials for High Temperatures—A Review, Tribol. Int., 1982, 15(5), p 303-315

    CAS  Google Scholar 

  11. S. Gupta, D. Filimonov, T. Palanisamy, T. El-Raghy, and M.W. Barsoum, Ta2AlC and Cr2AlC Ag-Based Composites—New Solid Lubricant Materials for Use Over a Wide Temperature Range Against Ni-Based Superalloys and Alumina, Wear, 2007, 262(11–12), p 1479-1489

    CAS  Google Scholar 

  12. M.W. Barsoum, A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28, p 201

    CAS  Google Scholar 

  13. J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell, S. Gupta, A. Ganguly, T. El-Raghy, and M.W. Barsoum, Electrical Transport, Thermal Transport, and Elastic Properties of M2AlC (M = Ti, Cr, Nb, and V), Phys. Rev. B, 2005, 72(11), p 115120

    Google Scholar 

  14. F. Cverna, Ed., ASM Ready Reference: Thermal Properties of Metals, ASM International, Cleveland, 2002

    Google Scholar 

  15. D. Davis, M. Srivastava, M. Malathi, B.B. Panigrahi, and S. Singh, Effect of Cr2AlC Max Phase Addition on Strengthening of Ni-Mo-Al Alloy Coating on Piston Ring: Tribological and Twist-Fatigue Life Assessment, Appl. Surf. Sci., 2018, 15(449), p 295-303

    Google Scholar 

  16. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies on the Properties of High-Velocity Oxy-Fuel Thermal Spray Coatings for Higher Temperature Applications, Mater. Sci., 2005, 41(6), p 805-823

    CAS  Google Scholar 

  17. V. Vishnyakov, O. Crisan, P. Dobrosz, and J.S. Colligon, Ion Sputter-Deposition and In-Air Crystallisation of Cr2AlC Films, Vacuum, 2014, 1(100), p 61-65

    Google Scholar 

  18. H.P. Komsa and A.V. Krasheninnikov, Effects of Confinement and Environment on the Electronic Structure and Exciton Binding Energy of MoS2 from First Principles, Phys. Rev. B, 2012, 86(24), p 241201

    Google Scholar 

  19. R. Saggar, H. Porwal, P. Tatarko, I. Dlouhý, and M.J. Reece, Boron Nitride Nanosheets Reinforced Glass Matrix Composites, Adv. Appl. Ceram., 2015, 114(sup1), p S26-S33

    CAS  Google Scholar 

  20. R.W. Bruce, Handbook of Lubrication and Tribology, Volume II: Theory and Design, CRC Press, Boca Raton, 2012

    Google Scholar 

  21. R.P. Chakradhar, G. Prasad, K. Venkateswarlu, and M. Srivastava, An Investigation on the Wear and Corrosion Behavior of HVOF-Sprayed WC-12Co-Al2O3 Cermet Coating, J. Mater. Eng. Perform., 2018, 27(3), p 1241-1248

    CAS  Google Scholar 

  22. Ch Verdon, A. Karimi, and J.-L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mater. Sci. Eng. A, 1998, 246(1–2), p 11-24

    Google Scholar 

  23. J.R. Davis, Ed., Handbook of Thermal Spray Technology, ASM International, Cleveland, 2004

    Google Scholar 

  24. M.S. Mahdipoor, F. Tarasi, C. Moreau, A. Dolatabadi, and M. Medraj, HVOF Sprayed Coatings of Nano-Agglomerated Tungsten-Carbide/Cobalt Powders for Water Droplet Erosion Application, Wear, 2015, 1(330), p 338-347

    Google Scholar 

  25. Š. Houdková, Z. Pala, E. Smazalová, M. Vostřák, and Z. Česánek, Microstructure and Sliding Wear Properties of HVOF Sprayed, Laser Remelted and Laser Clad Stellite 6 Coatings, Surf. Coat. Technol., 2017, 25(318), p 129-141

    Google Scholar 

  26. P. Mi, T. Wang, and F. Ye, Influences of the Compositions and Mechanical Properties of HVOF Sprayed Bimodal WC-Co Coating on Its High Temperature Wear Performance, Int. J. Refract Metal Hard Mater., 2017, 1(69), p 158-163

    Google Scholar 

  27. Y. Rajkumar, B.M. Rahul, P. Ananth Akash, and B.B. Panigrahi, Nonisothermal Sintering of Cr2AlC Powder, Int. J. Appl. Ceram. Technol., 2017, 14(1), p 63-67

    CAS  Google Scholar 

  28. A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204

    CAS  Google Scholar 

  29. Y. Gao, J. Xiong, D. Gong, J. Li, and M. Ding, Improvement of Solar Absorbing Property of Ni-Mo Based Thermal Spray Coatings by Laser Surface Treatment, Vacuum, 2015, 1(121), p 64-69

    Google Scholar 

  30. M. Farber and R.D. Srivastava. The Dissociation Energy of NiO and Vaporization and Sublimation Enthalpies of Ni, Analytical Calorimetry, R.S. Porter and J.F. Johnson, Ed., Springer, Boston, 1974, pp. 731–741

  31. A.R.C. Nascimento, F.B. Ettouil, C. Moreau, S. Savoie, and R. Schulz, Production of Babbitt Coatings by High Velocity Oxygen Fuel (HVOF) Spraying, J. Therm. Spray Technol., 2017, 26(7), p 1732-1740

    CAS  Google Scholar 

  32. L.L. Silveira, G.B. Sucharski, A.G.M. Pukasiewicz, and R.S.C. Paredes, Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings, J. Therm. Spray Technol., 2018, 27(4), p 695-709

    CAS  Google Scholar 

  33. C. Yang, C. Maoyou, W. Lijun, S. Zhixia, W. Xingming, and Z. Bitian. Microstructure and Performance of Cr2AlC Coatings Deposited by HVOF Spraying. Chinese Journal of Rare Metals. 2012, 4

  34. S. Saber-Samandari, K. Alamara, S. Saber-Samandari, and K.A. Gross, Micro-Raman Spectroscopy Shows How the Coating Process Affects the Characteristics of Hydroxylapatite, Acta Biomater., 2013, 9(12), p 9538-9546

    CAS  Google Scholar 

  35. J. Chen, X. Zhao, H. Zhou, J. Chen, Y. An, and F. Yan, Microstructure and Tribological Property of HVOF-Sprayed Adaptive NiMoAl-Cr3C2-Ag composite coating from 20 C to 800 C, Surf. Coat. Technol., 2014, 15(258), p 1183-1190

    Google Scholar 

  36. J. Chen, X. Zhao, H. Zhou, J. Chen, Y. An, and F. Yan, HVOF-Sprayed Adaptive Low Friction NiMoAl-Ag Coating for Tribological Application from 20 to 800 C, Tribol. Lett., 2014, 56(1), p 55-66

    Google Scholar 

  37. M.S. Ali, A.H.M. Ariff, C.N.A. Jaafar, S.M. Tahir, N. Mazlan, K.A. Maori, and H. Naser, Factors Affecting the Porosity and Mechanical Properties of Porous Ceramic Composite Materials, Reference Module in Materials Science and Materials Engineering, 2017. https://doi.org/10.1016/b978-0-12-803581-8.10131-6

  38. D.B. Lee and Thuan Dinh Nguyen, Cyclic Oxidation of Cr2AlC Between 1000 and 1300 C in Air, J. Alloys Compd., 2008, 464(1–2), p 434-439

    CAS  Google Scholar 

  39. G. Frommeyer, R. Rablbauer, and H.J. Schäfer, Elastic Properties of B2-Ordered NiAl and NiAl-X (Cr, Mo, W) Alloys, Intermetallics, 2010, 18(3), p 299-305

    CAS  Google Scholar 

  40. W.B. Tian, P.L. Wang, G.J. Zhang, Y.M. Kan, and Y.X. Li, Mechanical Properties of Cr2AlC Ceramics, J. Am. Ceram. Soc., 2007, 90(5), p 1663-1666

    CAS  Google Scholar 

  41. S.M. Hashemi, N. Parvin, and Z. Valefi, Effect of Microstructure and Mechanical Properties on Wear Behavior of Plasma-Sprayed Cr2O3-YSZ-SiC Coatings, Ceram. Int., 2019, 45(5), p 5284-5296

    CAS  Google Scholar 

  42. A. Souchet, J. Fontaine, J.L. Loubet, Z. Hassan, M. Belin, and M.W. Barsoum, The Role of Tribofilm Evolution on Tribological Behaviour of Ti3SiC2 Ceramic. in Proceeding of World Tribology Congress III 2005 Jan 1.

  43. S. Gupta and M.W. Barsoum, On the Tribology of the MAX Phases and Their Composites During Dry Sliding: A Review, Wear, 2011, 271(9–10), p 1878-1894

    CAS  Google Scholar 

  44. X.S. Wang, Z.L. Lu, G.T. Lin, L. Jia, and J.X. Chen, Effect of Cr2AlC Content on the Properties of a Cu-Cr2AlC Composite, Results Phys., 2016, 1(6), p 789-795

    Google Scholar 

  45. G.V. Kumar, C.S. Rao, and N. Selvaraj, Mechanical and Tribological Behavior of Particulate Reinforced Aluminum Metal Matrix Composites—A Review, J. Miner. Mater. Charact. Eng., 2011, 10(01), p 59

    Google Scholar 

  46. W. Gu, H.F. Wu, S.L. Kampe, and G.-Q. Lu, Volume Fraction Effects on Interfacial Adhesion Strength of Glass-Fiber-Reinforced Polymer Composites, Mater. Sci. Eng. A, 2000, 277(1–2), p 237-243

    Google Scholar 

  47. R. Mitra and Y.R. Mahajan, Interfaces in Discontinuously Reinforced Metal Matrix Composites: An Overview, Bull. Mater. Sci., 1995, 18(4), p 405-434

    CAS  Google Scholar 

  48. A. Kulkarni, J. Gutleber, S. Sampath, A. Goland, W.B. Lindquist, H. Herman, A.J. Allen, and B. Dowd, Studies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion Spraying, Mater. Sci. Eng. A, 2004, 369(1–2), p 124-137

    Google Scholar 

  49. J. Jie, L. Huan, and L. Xiaohan, Friction and Wear Behavior of Micro Arc Oxidation Coatings on Magnesium Alloy at High Temperature, Rare Met. Mater. Eng., 2017, 46(5), p 1202-1206

    Google Scholar 

  50. A. Ghosh and F. Sadeghi, A Novel Approach to Model Effects of Surface Roughness Parameters on Wear, Wear, 2015, 15(338), p 73-94

    Google Scholar 

  51. H. Chen, Y. Du, D. Wang, C. Zhang, G. Yang, B. Liu, Y. Gao, and S. Shi, TiC/Ti3AlC2-Co Plasma-Sprayed Coatings with Excellent High-Temperature Tribological Properties, Ceram. Int., 2018, 44(18), p 22520-22528

    CAS  Google Scholar 

  52. L. Gudmand-Høyer, A. Bach, G.T. Nielsen, and P. Morgen, Tribological Properties of Automotive Disc Brakes with Solid Lubricants, Wear, 1999, 232(2), p 168-175

    Google Scholar 

  53. E. Badisch, C. Mitterer, P.H. Mayrhofer, G. Mori, R.J. Bakker, J. Brenner, and H. Störi, Characterization of Tribo-Layers on Self-Lubricating Plasma-Assisted Chemical-Vapor-Deposited TiN Coatings, Thin Solid Films, 2004, 460(1–2), p 125-132

    CAS  Google Scholar 

  54. A.S. Rathaur, J.K. Katiyar, and V.K. Patel, Thermo-Mechanical and Tribological Properties of SU-8/h-BN Composite with SN150/perfluoropolyether Filler, Friction, 2020, 8(1), p 151-163

    CAS  Google Scholar 

  55. A. Shankara, P.L. Menezes, K.R. Simha, and S.V. Kailas, Study of Solid Lubrication with MoS2 Coating in the Presence of Additives Using Reciprocating Ball-on-Flat Scratch Tester, Sadhana, 2008, 33(3), p 207-220

    CAS  Google Scholar 

  56. M.R. Vazirisereshk, A. Martini, D.A. Strubbe, and M.Z. Baykara, Solid Lubrication with MoS2: A Review, Lubricants, 2019, 7(7), p 57

    Google Scholar 

  57. T.W. Scharf and S.V. Prasad, Solid Lubricants: A Review, J. Mater. Sci., 2013, 48(2), p 511-531

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Director, CSIR-NAL and Head, Surface Engineering Division, CSIR-NAL, for permission to carry out the coating development at CSIR-National Aerospace Laboratories, Bengaluru, Karnataka, India. The authors are thankful to the technical staff of the division for their assistance rendered in the characterization of the coatings. Mr. Deepak Davis acknowledges the ‘Council of Scientific and Industrial Research’, Government of India, New Delhi, India for financial support through CSIR-SRF [CSIR-HRDG reference no. 09/1045(0030)2K19 EMR-I]. The authors also would like to acknowledge the SRM Institute of Science and Technology, Chennai, Tamil Nadu, India for the funding under Selective Excellence Initiative (PNT01) and micro-Raman facility. We acknowledge Nanotechnology Research Centre, SRM Institute of Science and Technology, Chennai, India, for providing FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheela Singh or Meenu Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D., Singh, S., Chakradhar, R.P.S. et al. Tribo–Mechanical Properties of HVOF-Sprayed NiMoAl-Cr2AlC Composite Coatings. J Therm Spray Tech 29, 1763–1783 (2020). https://doi.org/10.1007/s11666-020-01069-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01069-8

Keywords

Navigation