Skip to main content

Advertisement

Log in

Synthesis of rGO/CuO/Ag Ternary Nanocomposites Via Hydrothermal Approach for Opto-electronics and Supercapacitor Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present investigation deals with the synthesis of reduced graphene oxide (rGO)/copper oxide (CuO)/silver (Ag) ternary nanocomposites (NCs) by hydrothermal method to improve the electrical behavior. In typical synthesis, ammonia was used as a reducing agent at room temperature. The powder X-ray diffraction (PXRD) pattern revealed the existence of single-phase monoclinic structure and face-centered cubic (FCC) phase of CuO and Ag. Other phase impurities were also observed from the prepared rGO/CuO/Ag NCs. The surface morphology of rGO/CuO/Ag NCs was investigated by SEM and TEM analysis. The surface elemental composition of the prepared material was investigated by the EDAX analysis. The dielectric response of the materials was studied by dielectric constant, dielectric loss, and AC conductivity studies. The lesser amount of activation energy was attained from the synthesized rGO/CuO/Ag NCs, and it was proved that this type of material is the most emerging candidate for various opto-electronics application. The electrochemical behavior was studied by the cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements. From this study, ideal capacitance behavior with high capacitance of about 575 F/g was achieved respectively for rGO/CuO/Ag NCs at the current density of 1 Ag−1in 0.5 M K2SO4 electrolyte solution. These superior electrochemical features demonstrated that the prepared rGO/CuO/Ag NCs are a potential candidate for next-generation supercapacitor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ates, M., Garip, A., Yörük, O., Bayrak, Y., Kuzgun, O., Yildirim, M.: Energy Technol. 168, 48 (2019)

  2. Gopalakrishnan, A., Vishnu, N., Badhulika, S.: J. Electroanal. Chem. 187, 834 (2019)

    Google Scholar 

  3. Dubal, D.P., Chodankar, N.R., Gund, G.S., Holze, R., Lokhande, C.D., Romero, P.G.: Energy Technol. 168, 3 (2015)

    Google Scholar 

  4. Purushothaman, K.K., Saravanakumar, B., Babu, I.M., Sethuraman, B., Muralidharan, G.: RSC Adv. 23485, 4 (2014)

    Google Scholar 

  5. Yu, G., Xie, X., Pan, L., Bao, Z., Cui, Y.: Nano Energy. 213, 2 (2013)

    Google Scholar 

  6. Li, X., Wei, B.: Nano Energy. 159, 2 (2013)

    Google Scholar 

  7. Dubal, D.P., Kim, J.G., Kim, Y., Holze, R., Lokhande, C.D., Kim, W.B.: Energy Technol. 325, 2 (2014)

    Google Scholar 

  8. Vivek, C., Balraj, B., Thangavel, S.: J. Electron. Mater. 49, 1075–1070 (2020)

    Article  ADS  Google Scholar 

  9. Dey, K.K., Kumar, A., Shanker, R., Dhawan, A., Wan, M., Yadav, R.R., Srivastava, A.K.: RSC Adv. 1387, 2 (2012)

    Google Scholar 

  10. Zhang, Y.X., Huang, M., Li, F., Wen, Z.Q.: Int. J. Electrochem. Sci. 8645, 8 (2013)

    Google Scholar 

  11. Sridevi, A., Siva, C., Balraj, B., Venkatesan, G.K.D.P.: J. Inorg. Organomet. Polym. Mater. 29, 535–540 (2019)

    Article  Google Scholar 

  12. Pendashteha, A., Mousavia, M.F., Rahmanifa, M.S.: Electrochim. Acta. 347, 88 (2013)

    Google Scholar 

  13. Mai, Y.J., Wang, X.L., Xiang, J.Y., Qiao, Y.Q., Zhang, D., Gu, C.D., Tu, J.P.: Electrochim. Acta. 2306, 56 (2011)

    Google Scholar 

  14. Zhao, B., Liu, P., Zhuang, H., Jiao, Z., Fang, T., Xu, W., Lub, B., Jiang, Y.: J. Mater. Chem. A. 367, 1 (2013)

    Google Scholar 

  15. Bhargava, R., Khan, S.: Adv. Powder Technol. 2812, 28 (2017)

    Google Scholar 

  16. Shao, P.R., Deng, S.Z., Chen, J., Chen, J., Xu, N.S.: J. Appl. Phys. 023710, 109 (2011)

    Google Scholar 

  17. Jeong, Y.K., Choi, G.M.: J. Phys. Chem. Solids. 81, 57 (1996)

    Google Scholar 

  18. Pramothkumar, A., Senthilkumar, N., Malar, K.C.M.G., Meena, M., Potheher, I.V.: J. Mater. Sci. Mater. Electron. 19043, 30 (2019)

    Google Scholar 

  19. Wang, Y., Guan, H., Dong, C., Xiao, X., Du, S., Wang, Y.: Ceram. Int. 936, 42 (2016)

    Google Scholar 

  20. Senthilkumar, N., Ganapathy, M., Arulraj, A., Meena, M., Vimalan, M., VethaPotheher, I.: J. Alloys Compd. 171, 750 (2018)

    Google Scholar 

  21. Ganapathy, M., Senthilkumar, N., Vimalan, M., Jeysekaran, R., Vetha Potheher, I.: Mater. Res. Express. 045020, 5 (2018)

    Google Scholar 

  22. Senthilkumar, N., Vivek, E., Shankar, M., Meena, M., Vimalan, M., Vetha Potheher, I.: J. Mater. Sci. Mater. Electron. 2927, 29 (2018)

    Google Scholar 

  23. Viswanathan, A., Shetty, A.N.: Electrochim. Acta. 204, 289 (2018)

    Google Scholar 

  24. Viswanathan, A., Shetty, A.N.: Electrochim. Acta. 483, 257 (2017)

    Google Scholar 

  25. Xu, D., Zhu, C., Meng, X., Chen, Z., Li, Y., Zhang, D., Zhu, S.: Sensors Actuators. B435, 265 (2018)

    Google Scholar 

  26. Koops, C.G.: Phys. Rev. 121, 83 (1951)

    Google Scholar 

  27. Wagner, K.W.: Ann. Phys. 817, 626 (1913)

    Google Scholar 

  28. Xue, D., Kitamura, K.: Solid State Commun. 537, 122 (2002)

    Google Scholar 

  29. Singh, A.K.: Synthesis, Adv. Powder Technol. 609, 21 (2010)

    Google Scholar 

  30. Senthilkumar, N., Ganapathy, M., Sharmila, S., Shankar, M., Vimalan, M., Vetha Potheher, I.: J. Alloys Compd. 624, 703 (2017)

    Google Scholar 

  31. Jeyachitra, R., Senthilnathan, V., Senthil, T.S.: J. Mater. Sci. Mater. Electron. 1189, 29 (2017)

    Google Scholar 

  32. Senthilkumar, N., Venkatachalam, V., Kandiban, M., Vigneshwaran, P., Jayavel, R., VethaPotheher, I.: Physica E. 121, 106 (2019)

    Google Scholar 

  33. Vigneshwaran, P., Kandiban, M., Senthilkumar, N., Venkatachalam, V., Jayavel, R., VethaPotheher, I.: J. Mater. Sci. Mater. Electron. 4653, 27 (2016)

    Google Scholar 

  34. Vijayabala, V., Senthilkumar, N., Nehru, K., Karvembu, R.: J. Mater. Sci. Mater. Electron. 323, 29 (2018)

    Google Scholar 

  35. Majumdar, D., Baugh, N., Bhattacharya, S.K.: Colloids Surf. A Physicochem. Eng. Asp. 158, 512 (2017)

    Google Scholar 

  36. Bu, I.Y.Y., Huang, R.: Ceram. Int. 45, 43 (2017)

    Google Scholar 

  37. Park, H., Han, T.H.: Macromol. Res. 809, 22 (2014)

    Google Scholar 

  38. Rai, A.K., Anh, L.T., Gim, J., Mathew, V., Kang, J., Paul, P.J., Singh, N.K., Song, J., Kim, J.: J. Power Sources. 435, 244 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Balraj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridevi, A., Balraj, B., Senthilkumar, N. et al. Synthesis of rGO/CuO/Ag Ternary Nanocomposites Via Hydrothermal Approach for Opto-electronics and Supercapacitor Applications. J Supercond Nov Magn 33, 3501–3510 (2020). https://doi.org/10.1007/s10948-020-05594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05594-z

Keywords

Navigation