Skip to main content
Log in

Crystal morphology prediction of 2,2′,4,4′,6,6’-hexanitrostilbene (HNS) by molecular scale simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The spiral growth model was applied to predict the crystal morphology of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS). We selected solvents of N,N-dimethylformamide (DMF), N-methyl pyrrolidone (NMP), and nitric acid (NA) to control the crystal morphologies of HNS. Molecular dynamic simulations were used to relax the constructed interface model. The relative growth rate of important face is calculated by the spiral growth expression. The predicted crystal shapes are flaky in three solvents. Only (100), (001), and (011) faces are generated in DMF, NMP, and NA. The aspect ratios of the predicted HNS crystal morphologies in DMF, NMP, and NA are 23.00, 15.45, and 4.85, respectively. In addition, we analyzed the properties on each face using periodic bond chain, molecular arrangement, and roughness model. The excellent agreement between the predicted morphologies and the experimental images is clearly evident. These simulation results can provide guidance for the recrystallization of HNS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bennema P, van Eerden JP (1977) Morphology of crystals. Terra Scientific Publishing Co., Tokyo, pp 1–75

    Google Scholar 

  2. Sangwal K, Zdyb A, Chocyk D et al (1996) Effect of supersaturation and temperature on the growth morphology of ammonium oxalate monohydrate crystals obtained from aqueous solutions. Cryst Res Technol 31:267–273

    Article  CAS  Google Scholar 

  3. Karunanithi AT, Achenie LEK, Gani R (2006) A computer-aided molecular design framework for crystallization solvent design. Chem Eng Sci:611247–611260

  4. Vanishri S, Brahadeeswaran S, Bhat HL (2005) Crystal growth of semiorganic sodium p-nitrophenolate dihydrate from aqueous solution and their characterization. J Cryst Growth 275:141–146

    Article  Google Scholar 

  5. Khanam T, Darakis E, Rajendran A et al (2008) On-line digital holographic measurement of size and shape of microparticles for crystallization processes. Proc SPIE-Int Soc Opt Eng 7155:325–332

    Google Scholar 

  6. Winn D, Doherty MF (2010) ChemInform abstract: modeling crystal shapes of organic materials grown from solution. Cheminform 32:1348–1367

    Google Scholar 

  7. Dimo K (2000) Nucleation: basic theory with applications. Butterworths-Heinemann, Oxford

    Google Scholar 

  8. Vainshtein BK, Chernov AA, Shuvalov LA (1984) Modern Crystallography III Crystal Growth, Springer-Verlag

  9. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. I. Acta Crystallogr 8(1):49–52

    Article  CAS  Google Scholar 

  10. Docherty R, Clydesdale G, Roberts KJ et al (1991) Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals. J Phys D Appl Phys 24(2):89

    Article  CAS  Google Scholar 

  11. Liu XY, Boek ES, Briels WJ et al (1995) Prediction of crystal growth morphology based on structural analysis of the solid–fluid interface. Nature 374(6520):342–345

    Article  CAS  Google Scholar 

  12. Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Phil Trans R Soc A 243(866):299–358

    Google Scholar 

  13. Horst JH, Geertman RM, van Rosmalen GM (2001) The effect of solvent on crystal morphology. J Cryst Growth 230:277–284

    Article  Google Scholar 

  14. Hou L, Zhang C, Li L et al (2018) CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: morphology and surface structure effects on the sensing performance. Talanta 188:41–49

    Article  CAS  Google Scholar 

  15. Singh B, Malhotra RK (1983) Hexanitrostilbene and its properties. Def Sci J 33(2):165–176

    Article  CAS  Google Scholar 

  16. Quinlin WT (1977) Cyclic recrystallization of Sandia furnished HNS I. Mason and Hanger-Silas Mason Co., Inc., Amarillo

    Book  Google Scholar 

  17. Quinlin WT, Evans VH, Schaffer CL et al (1976) HNS II pilot scale studies and production trial run. Mason and Hanger-Silas Mason Co., Inc., Amarillo

    Book  Google Scholar 

  18. Chen L, Song L, Gao Y et al (2017) Experimental determination of solubilities and supersolubilities of 2,2′,4,4′,6,6′-hexanitrostilbene in different organic solvents. Chin J Chem Eng 25(6):809–814

    Article  CAS  Google Scholar 

  19. Chen L, Zhang T, Li M et al (2016) Solubility of 2,2′,4,4′,6,6′-hexa-nitrostilbene in binary solvent of N,N-dimethylformamide and acetonitrile. J Chem Thermodynamics 95:99–104

    Article  CAS  Google Scholar 

  20. Singh MK, Tiwari VS (2015) Uncovering the mode of action of solvent and additive controlled crystallization of urea crystal: a molecular-scale study. Cryst Growth Des 15(7):3220–3234

    Article  CAS  Google Scholar 

  21. Singh MKA, Banerjee A (2013) Role of solvent and external growth environments to determine growth morphology of molecular crystals. Cryst Growth Des 13(6):2413–2425

    Article  CAS  Google Scholar 

  22. Sheremetev AB, Ivanova EA, Spiridonova NP et al (2005) Desilylative nitration of C,N-disilylated 3-amino-4-methylfurazan. J Heterocyclic Chem 42(6):1237–1242

    Article  CAS  Google Scholar 

  23. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  24. Materials Studio 5.5 (2007) Acceryls Inc., San Diego

  25. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369:253–287

    Article  Google Scholar 

  26. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Song thanks the Innovation Postgraduate Research & Practice Innovation Program of Jiangsu Province for supporting this work.

Funding

This work was supported by Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001) and Guangdong Innovation Research Team Project (No. 2017ZT07C062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Ju.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Zhao, FQ., Xu, SY. et al. Crystal morphology prediction of 2,2′,4,4′,6,6’-hexanitrostilbene (HNS) by molecular scale simulation. J Mol Model 26, 213 (2020). https://doi.org/10.1007/s00894-020-04474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04474-6

Keywords

Navigation