Skip to main content
Log in

Correcting the Side Effects of ADC Filtering in MR Image Reconstruction

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This work investigates the role of the filters implemented on analog-to-digital converters for the reconstruction of magnetic resonance images. We analyze the effects of these filters both from a theoretical and an experimental point of view and demonstrate how it may lead to severe degradation of the reconstructed images when the distance between consecutive samples is larger than Shannon’s limit. Based on these findings, we propose a mathematical model and a numerical algorithm that allow to mitigate such filtering effects both for linear and nonlinear reconstructions. Experiments on simulated and real data on a 7 Tesla scanner show that the proposed ideas allow to significantly improve the overall image quality. These findings are particularly relevant for high resolution imaging and for recent sampling schemes saturating the maximum gradient amplitude. They also open new challenges in sampling theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Addy, N.O., Wu, H.H., Nishimura, D.G.: Simple method for MR gradient system characterization and k-space trajectory estimation. Magn. Reson. Med. 68(1), 120–129 (2012)

    Google Scholar 

  2. Ahn, C.B., Kim, J.H., Cho, Z.H.: High-speed spiral-scan echo planar NMR imaging-i. IEEE Trans. Med. Imaging 5(1), 2–7 (1986)

    Google Scholar 

  3. Aldroubi, A.: Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmonic Anal. 13(2), 151–161 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Ansorge, R., Graves, M.J.: The Physics and Mathematics of MRI. Morgan & Claypool Publishers, San Rafael (2016)

    MATH  Google Scholar 

  5. Behin, R., Bishop, J., Henkelman, R.M.: Dynamic range requirements for MRI. Concept. Magn. Reson. Part B: Magn. Reson. Eng: An Educ. J 26(1), 28–35 (2005)

    Google Scholar 

  6. Block, K.T., Uecker, M., Frahm, J.: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Reson. Med. 57(6), 1086–1098 (2007)

    Google Scholar 

  7. Boyer, C., Chauffert, N., Ciuciu, P., Kahn, J., Weiss, P.: On the generation of sampling schemes for magnetic resonance imaging. SIAM J. Imaging Sci. 9(4), 2039–2072 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Chaâri, L., Pesquet, J.-C., Benazza-Benyahia, A., Ciuciu, P.: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging. Med. Image Anal. 15(2), 185–201 (2011)

    Google Scholar 

  10. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Fornasier, M. (ed.) Theoretical Foundations and Numerical Methods for Sparse Recovery, vol. 9, pp. 227–340. Walter de Gruyter, Berlin (2010)

    MATH  Google Scholar 

  11. Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Chauffert, N., Ciuciu, P., Kahn, J., Weiss, P.: A projection method on measures sets. Constr. Approx. 45(1), 83–111 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Chauffert, N., Weiss, P., Kahn, J., Ciuciu, P.: A projection algorithm for gradient waveforms design in magnetic resonance imaging. IEEE Trans. Med. Imaging 35(9), 2026–2039 (2016)

    MATH  Google Scholar 

  14. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, Berlin (2011)

    Google Scholar 

  15. Delattre, B., Heidemann, R.M., Crowe, L.A., Vallée, J.-P., Hyacinthe, J.-N.: Spiral demystified. Magn. Reson. Imaging 28(6), 862–881 (2010)

    Google Scholar 

  16. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14(6), 1368–1393 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Fessler, J.A.: Model-based image reconstruction for MRI. IEEE Signal Process. Mag. 27(4), 81–89 (2010)

    Google Scholar 

  18. Graessner, J.: Bandwidth in MRI. Magnetom Flash 2, 3–8 (2013)

    Google Scholar 

  19. Guerquin-Kern, M., Lejeune, L., Pruessmann, K.P., Unser, M.: Realistic analytical phantoms for parallel magnetic resonance imaging. IEEE Trans. Med. Imaging 31(3), 626–636 (2012)

    Google Scholar 

  20. Hoult, D.I.: The NMR receiver: a description and analysis of design. Prog. Nucl. Magn. Reson. Spectrosc. 12(1), 41–77 (1978)

    Google Scholar 

  21. Hoult, D.I.: Receiver design for MR. eMagRes (2007). https://doi.org/10.1002/9780470034590.emrstm1137

    Article  Google Scholar 

  22. Jouda, M., Gruschke, O.G., Korvink, J.G.: A new fully integrated multichannel receiver design for magnetic resonance imaging. Concept. Magn. Reson. Part B: Magn. Reson. Eng. 46(3), 134–145 (2016)

    Google Scholar 

  23. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3–A Software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. (TOMS) 36(4), 19 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)

    Google Scholar 

  25. Lazarus, C., Weiss, P., Vignaud, A., Ciuciu, P.: An empirical study of the maximum degree of undersampling in compressed sensing for T2*-weighted MRI. Magn. Reson. Imaging 53, 112–122 (2018)

    Google Scholar 

  26. Lazarus, Carole, Weiss, Pierre, Chauffert, Nicolas, Mauconduit, Franck, El Gueddari, Loubna, Destrieux, Christophe, Zemmoura, Ilyess, Vignaud, Alexandre, Ciuciu, Philippe: Sparkling: variable-density k-space filling curves for accelerated t2*-weighted MRI. Magn. Reson. Med. 81(6), 3643–3661 (2019)

    Google Scholar 

  27. Lee, J.H., Hargreaves, B.A., Hu, B.S., Nishimura, D.G.: Fast 3D imaging using variable-density spiral trajectories with applications to limb perfusion. Magn. Reson. Med. 50(6), 1276–1285 (2003)

    Google Scholar 

  28. Lee, Jin Hyung: Scott, Greig C, Pauly, John M, Nishimura, Dwight G: Broadband multicoil imaging using multiple demodulation hardware A feasibility study. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 54(3), 669–676 (2005)

    Google Scholar 

  29. Liang, D., Liu, B., Wang, J., Ying, L.: Accelerating sense using compressed sensing. Magn. Reson. Med. 62(6), 1574–1584 (2009)

    Google Scholar 

  30. Lufkin, R.B., Pusey, E., Stark, D.D., Brown, R., Leikind, B., Hanafee, W.N.: Boundary artifact due to truncation errors in mr imaging. Am. J. Roentgenol. 147(6), 1283–1287 (1986)

    Google Scholar 

  31. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Google Scholar 

  32. Mansfield, P.: Multi-planar image formation using NMR spin echoes. J. Phys. C : Solid State Phys. 10(3), L55 (1977)

    Google Scholar 

  33. McKenzie, C.A., Yeh, E.N., Ohliger, M.A., Price, M.D., Sodickson, D.K.: Self-calibrating parallel imaging with automatic coil sensitivity extraction. Magn. Reson. Med. 47(3), 529–538 (2002)

    Google Scholar 

  34. McVeigh, E.R., Henkelman, R.M., Bronskill, M.J.: Noise and filtration in magnetic resonance imaging. Med. Phys. 12(5), 586–591 (1985)

    Google Scholar 

  35. Meyer, C.H., Hu, B.S., Nishimura, D.G., Macovski, A.: Fast spiral coronary artery imaging. Magn. Reson. Med. 28(2), 202–213 (1992)

    Google Scholar 

  36. Nikolova, Mila: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Modeling Simul. 4(3), 960–991 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Google Scholar 

  38. Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis. Courier Corporation, North Chelmsford (2001)

    MATH  Google Scholar 

  39. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J 27(3), 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  40. Tang, W., Wang, W., Liu, W., Ma, Y., Tang, X., Xiao, L., Gao, J.-H.: A home-built digital optical MRI console using high-speed serial links. Magn. Reson. Med. 74(2), 578–588 (2015)

    Google Scholar 

  41. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, vol. 89. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  42. Weiger, M., Overweg, J., Rösler, M.B., Froidevaux, R., Hennel, F., Wilm, B.J., Penn, A., Sturzenegger, U., Schuth, W., Mathlener, M., et al.: A high-performance gradient insert for rapid and short-T2 imaging at full duty cycle. Magn. Reson. Med. (2017). https://doi.org/10.1002/mrm.26954

    Article  Google Scholar 

  43. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Zhao, T., Qian, Y., Hue, YK., Ibrahim, T., Boada, F.: An improved analytical solution for variable density spiral design. In: Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Toronto, p. 1342, (2008)

Download references

Acknowledgements

C. Lazarus and P. Weiss wish to acknowledge P. Ciuciu and A. Vignaud for helping them to identify the filtering effect thanks to their strong engagement in the acquisition of Sparkling sampling patterns. M. März and P. Weiss wish to warmly thank G. Kutyniok for her support and enabling them to meet on a regular basis. The authors wish to thank David Brünner for sending them some references regarding the receive chain in MRI. We would like to express our gratitude to the donors involved in the body donation program of the Association des dons du corps du Centre Ouest, Tours, who made it possible to use an ex vivo human brain as phantom for our experiments, by generously donating their bodies for science. We also would like to acknowledge C. Destrieux and I. Zemmoura for the extraction and fixation of this anatomical piece. We also wish to thank M. Bottlaender for providing the baboon phantom. C. Lazarus wishes to thank the CEA Irtelis international PhD program for its financial support. She also acknowledges the France Life Imaging project Multi-CS-MRI, which supported her traveling expenses to ITAV. M. März is supported by the DFG Priority Program DFG-SPP 1798. P. Weiss thanks the ANR JCJC OMS for partial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Weiss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarus, C., März, M. & Weiss, P. Correcting the Side Effects of ADC Filtering in MR Image Reconstruction. J Math Imaging Vis 62, 1034–1047 (2020). https://doi.org/10.1007/s10851-019-00940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00940-w

Keywords

Navigation