Skip to main content
Log in

Rapid chemical vapor deposition of graphene using methanol as a precursor

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this study, graphene was rapidly grown by chemical vapor deposition using a liquid cell for supplying methanol as a carbon source of graphene. To realize the rapid growth, methanol which is carbon-contained organic solvent was used instead of methane gas, a widely used carbon source for graphene growth. The graphene grown with the growth time as a variable was transferred to a SiO2/Si substrate with an oxide thickness of 300 nm to confirm whether it was grown with full coverage with an optical microscope. The results confirmed a full coverage in 0.5 min of growth. The Raman spectra also confirmed the G-peak position at 1585.0 cm−1 and an intensity ratio of 2D/G at 2.3 or higher. Concerning electrical transport characteristics, at an induced carrier density of 1 × 1012 cm−2, the hole (µh) and electron (µe) mobilities were 1524 cm2 V−1 s−1 and 1528 cm2 V−1 s−1, respectively. Thus, our study confirmed that high-quality, large-area graphene can be grown within 0.5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Tombros N, Jozsa C, Popinciuc M et al (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571–574. https://doi.org/10.1038/nature06037

    Article  CAS  Google Scholar 

  3. Chen J-H, Jang C, Xiao S et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209. https://doi.org/10.1038/nnano.2008.58

    Article  CAS  Google Scholar 

  4. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204. https://doi.org/10.1038/nature04235

    Article  CAS  Google Scholar 

  5. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  6. Mak KF, Sfeir MY, Wu Y et al (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101:196405. https://doi.org/10.1103/PhysRevLett.101.196405

    Article  CAS  Google Scholar 

  7. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308. https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  8. Booth TJ, Blake P, Nair RR et al (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8:2442–2446. https://doi.org/10.1021/nl801412y

    Article  CAS  Google Scholar 

  9. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  10. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622. https://doi.org/10.1038/nphoton.2010.186

    Article  CAS  Google Scholar 

  11. Wang Y, Tong SW, Xu XF et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518. https://doi.org/10.1002/adma.201003673

    Article  CAS  Google Scholar 

  12. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608. https://doi.org/10.1021/nl3012853

    Article  CAS  Google Scholar 

  13. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706

    Article  CAS  Google Scholar 

  14. Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  15. Ito K, Katagiri M, Sakai T, Awano Y (2013) Electrical resistivity measurements of layer number determined multilayer graphene wiring for future large scale integrated circuit interconnects. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.52.06GD08

    Article  Google Scholar 

  16. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. https://doi.org/10.1021/nl801827v

    Article  CAS  Google Scholar 

  17. Cao H, Yu Q, Colby R et al (2010) Large-scale graphitic thin films synthesized on Ni and transferred to insulators: structural and electronic properties. J Appl Phys 107:044310. https://doi.org/10.1063/1.3309018

    Article  CAS  Google Scholar 

  18. Gomez De Arco L, Zhang Y, Schlenker CW et al (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873. https://doi.org/10.1021/nn901587x

    Article  CAS  Google Scholar 

  19. Kobayashi T, Bando M, Kimura N et al (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102:023112. https://doi.org/10.1063/1.4776707

    Article  CAS  Google Scholar 

  20. Choe M, Lee BH, Jo G et al (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron 11:1864–1869. https://doi.org/10.1016/j.orgel.2010.08.018

    Article  CAS  Google Scholar 

  21. Jo G, Na S-I, Oh S-H et al (2010) Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl Phys Lett 97:213301. https://doi.org/10.1063/1.3514551

    Article  CAS  Google Scholar 

  22. Wang M, Jang SK, Jang W-J et al (2013) A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv Mater 25:2746–2752. https://doi.org/10.1002/adma.201204904

    Article  CAS  Google Scholar 

  23. Goyenola C, Stafström S, Schmidt S et al (2014) Carbon fluoride, CFx: structural diversity as predicted by first principles. J Phys Chem C 118:6514–6521. https://doi.org/10.1021/jp500653c

    Article  CAS  Google Scholar 

  24. Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84:075144. https://doi.org/10.1103/PhysRevB.84.075144

    Article  CAS  Google Scholar 

  25. Lin L, Peng H, Liu Z (2019) Synthesis challenges for graphene industry. Nat Mater 18:520–524. https://doi.org/10.1038/s41563-019-0341-4

    Article  CAS  Google Scholar 

  26. Cherian CT, Giustiniano F, Martin-Fernandez I et al (2015) ‘Bubble-Free’ electrochemical delamination of CVD graphene films. Small 11:189–194. https://doi.org/10.1002/smll.201402024

    Article  CAS  Google Scholar 

  27. Nam J, Lee I, Lee DY et al (2020) Abnormal grain growth for single-crystal Cu substrate and chemical vapor deposition of graphene on it. J Korean Phys Soc 76:923–927. https://doi.org/10.3938/jkps.76.923

    Article  CAS  Google Scholar 

  28. Nam J, Kim D-C, Yun H et al (2017) Chemical vapor deposition of graphene on platinum: growth and substrate interaction. Carbon 111:733–740. https://doi.org/10.1016/j.carbon.2016.10.048

    Article  CAS  Google Scholar 

  29. Lee I, Bae DJ, Lee WK et al (2019) Rapid synthesis of graphene by chemical vapor deposition using liquefied petroleum gas as precursor. Carbon 145:462–469. https://doi.org/10.1016/j.carbon.2019.01.004

    Article  CAS  Google Scholar 

  30. Yamada T, Kim J, Ishihara M, Hasegawa M (2013) Low-temperature graphene synthesis using microwave plasma CVD. J Phys Appl Phys 46:063001. https://doi.org/10.1088/0022-3727/46/6/063001

    Article  CAS  Google Scholar 

  31. Choi DS, Kim KS, Kim H et al (2014) Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst. ACS Appl Mater Interfaces 6:19574–19578. https://doi.org/10.1021/am503698h

    Article  CAS  Google Scholar 

  32. Park SJ, Lee I, Bae DJ et al (2015) Controlling the properties of graphene using CVD method: pristine and N-doped graphene. KEPCO J Electr Power Energy 1:169–174. https://doi.org/10.18770/KEPCO.2015.01.01.169

    Article  Google Scholar 

  33. Blake P, Hill EW, Castro Neto AH et al (2007) Making graphene visible. Appl Phys Lett 91:063124. https://doi.org/10.1063/1.2768624

    Article  CAS  Google Scholar 

  34. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  35. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  36. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  37. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  38. Park JS, Reina A, Saito R et al (2009) G′ band Raman spectra of single, double and triple layer graphene. Carbon 47:1303–1310. https://doi.org/10.1016/j.carbon.2009.01.009

    Article  CAS  Google Scholar 

  39. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496. https://doi.org/10.1038/nnano.2010.89

    Article  CAS  Google Scholar 

  40. Kim S, Nah J, Jo I et al (2009) Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett 94:062107. https://doi.org/10.1063/1.3077021

    Article  CAS  Google Scholar 

  41. Venugopal A, Chan J, Li X et al (2011) Effective mobility of single-layer graphene transistors as a function of channel dimensions. J Appl Phys 109:104511. https://doi.org/10.1063/1.3592338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Electric Power Corporation (Grant Number: R18XA06-34) and the Global Research and Development Center Program (Grant Number: 2018K1A4A3A01064272) of the NRF funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Soo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 1287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, I., Nam, J., Park, S.J. et al. Rapid chemical vapor deposition of graphene using methanol as a precursor. Carbon Lett. 31, 307–313 (2021). https://doi.org/10.1007/s42823-020-00166-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00166-6

Keywords

Navigation