Skip to main content
Log in

Fabrication and growth mechanism of ultra-crystalline C60 on silicon substrate in vacuum

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We report a simple procedure to fabricate single crystals 3D C60 having an FCC structure on silicon substrates using a vapour–solid set-up in vacuum conditions. The morphology of the deposited film can be tuned by controlling the temperature and position of the substrate. The as-fabricated samples are extensively characterised by transmission electron microscopy, scanning electron microscope, X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and nano-indentation, which allow us to shed light on the recrystallization process of the C60. In addition, the growth mechanism of the formation of crystalline 3D structure of the C60 film is discussed in detail. Based on the newly gained knowledge of mechanism and its unique properties, fullerene has shown huge potential as a solid lubricant on various kinds of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borodin VI, Trukhacheva VA (2004) Thermal stability of fullerenes. Tech Phys Lett 30:598–599. https://doi.org/10.1134/1.1783414

    Article  CAS  Google Scholar 

  2. Haddon RC (1993) The fullerenes: powerful carbon-based electron acceptors. Phil Trans R Soc Lond A 343:53–62. https://doi.org/10.1098/rsta.1948.0007

    Article  CAS  Google Scholar 

  3. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  4. McDonnell T, Korsmeyer S (1991) © 19 9 1 Nature Publishing Group. Nature 354:56–58

    Article  Google Scholar 

  5. Haddon RC, Perel AS, Morris RC et al (1995) C 60 thin film transistors. Appl Phys Lett 67:121–123. https://doi.org/10.1063/1.115503

    Article  CAS  Google Scholar 

  6. Dodabalapur A, Katz HE, Torsi L, Haddon RC (1995) Organic heterostructure field-effect transistors. Science 80(269):1560–1562. https://doi.org/10.1126/science.269.5230.1560

    Article  Google Scholar 

  7. Ellington AD, Szostak JW (1990) © 19 90 Nature Publishing Group. Lett Nat 346:818–822. https://doi.org/10.1016/0021-9797(80)90501-9

    Article  CAS  Google Scholar 

  8. Somani PR, Somani SP, Umeno M (2007) Toward organic thick film solar cells: Three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods. Appl Phys Lett 91:1–4. https://doi.org/10.1063/1.2801624

    Article  CAS  Google Scholar 

  9. Bhushan B, Gupta BK, Van Cleef GW et al (1993) Sublimed C60 films for tribology. Appl Phys Lett 62:3253–3255. https://doi.org/10.1063/1.109090

    Article  CAS  Google Scholar 

  10. Pu J, Mo Y, Wang L (2013) Fabrication of novel graphene / fullerene hybrid lubricating film based on self-assembly for MEMS applications-Suppporting Information. Chem Comm 50:469–471

    Article  Google Scholar 

  11. Hyeon Suk S, Seok Min Y, Qun T et al (2008) Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process. Angew Chemie Int Ed 47:693–696. https://doi.org/10.1002/anie.200704182

    Article  CAS  Google Scholar 

  12. Sathish M, Miyazawa K, Hill JP, Ariga K (2009) Solvent engineering for shape-shifter pure fullerene (C 60). J Am Chem Soc 131:6372–6373. https://doi.org/10.1021/ja902061r

    Article  CAS  Google Scholar 

  13. Briseno AL, Mannsfeld SCB, Ling MM et al (2006) Patterning organic single-crystal transistor arrays. Nature 444:913–917. https://doi.org/10.1038/nature05427

    Article  CAS  Google Scholar 

  14. Wang L, Liu B, Liu D et al (2006) Synthesis of thin, rectangular c60 nanorods usingm-xylene as a shape controller. Adv Mater 18:1883–1888. https://doi.org/10.1002/adma.200502738

    Article  CAS  Google Scholar 

  15. Miyazawa K (2009) Synthesis and properties of fullerene nanowhiskers and fullerene nanotubes. J Nanosci Nanotechnol 9:41–50. https://doi.org/10.1166/jnn.2009.J013

    Article  CAS  Google Scholar 

  16. Nguyen NN, Lee HC, Yoo MS et al (2020) Charge-transfer-controlled growth of organic semiconductor crystals on graphene. Adv Sci. https://doi.org/10.1002/advs.201902315

    Article  Google Scholar 

  17. Bayramov AI, Mamedov NT, Dzhafarov TD et al (2019) Photoluminescence and optical transitions in C60 fullerene thin films deposited on glass, silicon and porous silicon. Thin Solid Films 690:137566. https://doi.org/10.1016/j.tsf.2019.137566

    Article  CAS  Google Scholar 

  18. Huttner A, Breuer T, Witte G (2019) Controlling interface morphology and layer crystallinity in organic heterostructures: microscopic view on C60 island formation on pentacene buffer layers. ACS Appl Mater Interfaces 11:35177–35184. https://doi.org/10.1021/acsami.9b09369

    Article  CAS  Google Scholar 

  19. Dai Q, Xu S, Peng Y et al (2020) Anomalous photocurrent characteristics in fullerene C60 thin film-based organic field-effect transistors under illumination. Chem Phys Lett 742:137133. https://doi.org/10.1016/j.cplett.2020.137133

    Article  CAS  Google Scholar 

  20. Chernogorova O, Potapova I, Drozdova E et al (2014) Structure and physical properties of nanoclustered graphene synthesized from C60 fullerene under high pressure and high temperature. Appl Phys Lett 104:43110

    Article  Google Scholar 

  21. Borisova PA, Blanter MS, Brazhkin VV et al (2015) Phase transformations in amorphous fullerite C 60 under high pressure and high temperature. J Phys Chem Solids 83:104–108

    Article  CAS  Google Scholar 

  22. Yao M, Andersson BM, Stenmark P et al (2009) Synthesis and growth mechanism of differently shaped C60 nano/microcrystals produced by evaporation of various aromatic C60 solutions. Carbon 47:1181–1188. https://doi.org/10.1016/j.carbon.2009.01.010

    Article  CAS  Google Scholar 

  23. Mochida I, Egashira M, Korai Y, Yokogawa K (1997) Structural changes of fullerene by heat-treatment up to graphitization temperature. Carbon 35:1707–1712. https://doi.org/10.1016/S0008-6223(97)00125-5

    Article  CAS  Google Scholar 

  24. Kopova I, Bacakova L, Lavrentiev V, Vacik J (2013) Growth and potential damage of human bone-derived cells on fresh and aged fullerene C60 films. IJMS 14:9182–9204

    Article  Google Scholar 

  25. Demin VA, Blank VD, Karaeva AR et al (2016) C60 fullerene decoration of carbon nanotubes. J Exp Theor Phys 123:985–990. https://doi.org/10.1134/S1063776116130021

    Article  CAS  Google Scholar 

  26. Leiro JA, Heinonen MH, Laiho T, Batirev IG (2003) Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. J Electron Spectros Relat Phenomena 128:205–213. https://doi.org/10.1016/S0368-2048(02)00284-0

    Article  CAS  Google Scholar 

  27. García D, Rodríguez-Pérez L, Herranz MA et al (2016) A C60-aryne building block: synthesis of a hybrid all-carbon nanostructure. Chem Commun 52:6677–6680. https://doi.org/10.1039/c5cc10462a

    Article  Google Scholar 

  28. Yamane M, Mackenzie J (1974) Vicker’s hardness of glass. J Non Cryst Solids 15:153–164. https://doi.org/10.1016/0022-3093(74)90044-1

    Article  CAS  Google Scholar 

  29. https://www.mindat.org/min-1740.html. Accessed 3 May 2020

  30. Körner M, Loske F, Einax M et al (2011) Second-layer induced island morphologies in thin-film growth of fullerenes. Phys Rev Lett 107:16101

    Article  Google Scholar 

  31. Stimpel T, Schraufstetter M, Baumgärtner H, Eisele I (2002) STM studies of C60 on a Si(111): B surface phase. Mater Sci Eng B 89:394–398. https://doi.org/10.1016/s0921-5107(01)00841-8

    Article  Google Scholar 

  32. Yan DW, Liu W, Wang HZ, Wang CR (2007) Preparation of fullerene polycrystalline films on different substrates by physical vapor deposition. Mater Trans 48:700–703. https://doi.org/10.2320/matertrans.48.700

    Article  CAS  Google Scholar 

  33. Geng J, Zhou W, Skelton P et al (2008) Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires. J Am Chem Soc 130:2527–2534. https://doi.org/10.1021/ja076392s

    Article  CAS  Google Scholar 

  34. Diederich F, Thilgen C (1996) Covalent fullerene chemistry. Science 271:317–324. https://doi.org/10.1126/science.271.5247.317

    Article  CAS  Google Scholar 

  35. Álvarez-Murga M, Hodeau JL (2015) Structural phase transitions of C60 under high-pressure and high-temperature. Carbon 82:381–407. https://doi.org/10.1016/j.carbon.2014.10.083

    Article  CAS  Google Scholar 

  36. Iwasa Y, Arima T, Fleming RM et al (1994) New phases of C60 synthesized at high pressure. Science 264:1570–1572. https://doi.org/10.1126/science.264.5165.1570

    Article  CAS  Google Scholar 

  37. Sundar CS, Sahu PC, Sastry VS et al (1996) Pressure-induced polymerization of fullerenes: A comparative study of C60 and C70. Phys Rev B 53:8180–8183. https://doi.org/10.1103/PhysRevB.53.8180

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge funding support from Ministry of Education WBS R284-000-150-112, R284-000-227-114 and NUS-HU R284-000-183-133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. C. Chua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Rath, A., Yu, S.H. et al. Fabrication and growth mechanism of ultra-crystalline C60 on silicon substrate in vacuum. Carbon Lett. 31, 315–322 (2021). https://doi.org/10.1007/s42823-020-00167-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00167-5

Keywords

Navigation