Skip to main content
Log in

Ananalytical and Experimental Study of T - Shaped Composite Stiffened Panels: Effect of 90° Plies in Stringers on Curing and Buckling Performance

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The effect on curing deformation and strength of 90° plies in stringers for composite T-shaped stiffened panel were presented by numerical analysis and experimental measurement. In this work, the finite element model (FEM) for curing deformation based on cure kinetics formulation was utilized. The model for buckling and failure based on Tsai-Wu failure criteria and incremental/ Newton -Raphson mixed iteration equation was established. The curing, buckling and post-buckling analysis were performed on composite T-shaped stiffened panels to obtain the deformation, the critical load and mode of failure, with different 90° plies-ratios in stringers. Furthermore, the experimental investigation has been carried out for specimens with different plies-ratios of 90° plies in stringers. The good agreement between the numerical results obtained by finite element method and the experimental ones demonstrated that this kind of numerical analysis could estimate appropriately the behavior of the structure. In addition, it was found that the 90° plies in stringers play an important role in reducing the curing deformation, but it has little effect on the axial compression loading capacity for composite T-shaped stiffened panel, which is useful for application in civil aviation aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Anandan, S., Dhaliwal, G.S., Huo, Z., Chandrashekhara, K., Apetre, N., Iyyer, N.: Curing of thick thermoset composite laminates: multiphysics modeling and experiments [J]. Appl. Compos. Mater. 25(5), 1155–1168 (2018)

    Article  CAS  Google Scholar 

  2. Taczała, M., Buczkowski, R., Kleiber, M.: Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments [J]. Compos. Part B. 109, 238–247 (2017)

    Article  Google Scholar 

  3. Anyfantis, K.N., Tsouvalis, N.G.: Post buckling progressive failure analysis of composite laminated stiffened panels [J]. Appl. Compos. Mater. 19(3–4), 219–236 (2012)

    Article  Google Scholar 

  4. Yang, Z.Y., Zhang, J.B., Xie, Y.J., Zhang, B.M., Sun, B.G., Guo, H.J.: Influence of layup and curing on the surface accuracy in the manufacturing of carbon Fiber reinforced polymer (CFRP) composite space mirrors. Appl. Compos. Mater. 24, 1447–1458 (2017)

    Article  CAS  Google Scholar 

  5. Hassan, M.H., Othman, A.R., Kamaruddin, S.: A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures [J]. Int. J. Adv. Manuf. Technol. 91, 9–12 (2017)

    Article  Google Scholar 

  6. Nik, M.A., Fayazbakhsh, K., Pasini, D., Lessard, L.: Optimization of variable stiffness composites with embedded defects induced by Automated Fiber Placement [J]. Composite Structures. 107, 160–166 (2014)

    Article  Google Scholar 

  7. Jeevan Kumar, N., Ramesh Babu, P., Pandu, R.: Investigations on Buckling Behaviour of Laminated Curved Composite Stiffened Panels [J]. Applied Composite Materials. 21(2), 259–376 (2014)

    Google Scholar 

  8. Riccio, A., Raimondo, A., Scaramuzzino, F.: A study on skin Delaminations growth in stiffened composite panels by a novel numerical approach [J]. Appl. Compos. Mater. 20(4), 465–488 (2013)

    Article  Google Scholar 

  9. Yang, Q.J., Hayman, B.: Simplified ultimate strength analysis of compressed composite plates with linear material degradation [J]. Composites Part B. 69, 13–21 (2015)

    Article  Google Scholar 

  10. Limam, O., Foret, G., Zenzri, H.: Ultimate strength of pin-loaded composite laminates: a limit analysis approach [J]. Compos. Struct. 93(4), 1217–1224 (2010)

    Article  Google Scholar 

  11. Chen, N.Z., Guedes, S.C.: Progressive failure analysis for prediction of postbuckling compressive strength of laminated composite plates and stiffened panels. [J]. Reinf Plast Compos. 26(10), 1021–1042 (2007)

    Article  CAS  Google Scholar 

  12. Chen, N.Z., Guedes Soares, C.: Reliability assessment of post-buckling compressive strength of laminated composite plates and stiffened panels under axial compression. [J]. Solids Struct. 44, 7167–7182 (2007)

    Article  Google Scholar 

  13. Miao, Y., Li, J.-c., Gong, Z.-h., Xu, J., He, K., Peng, J., Cui, Y.-h.: Study on the effect of cure cycle on the process induced deformation of cap shaped stiffened composite panels [J]. Appl. Compos. Mater. 20(4), 709–718 (2013)

    Article  Google Scholar 

  14. Sarrazin, H., Kim, B.K., Ahn, S.H., Springer, G.S.: Effect of processing temperature and layup on springback. J. Compos. Mater. 29, 1278–1293 (1995)

    Article  CAS  Google Scholar 

  15. Daoud, F., Calomfirescu, M.: Optimization of composite aircraft structures in consideration of postbuckling behavior [J]. Int. J. Struct. Stab. Dyn. 10(4), 905–916 (2010)

    Article  Google Scholar 

  16. An, H., Chen, S., Huang, H.: Concurrent optimization of stacking sequence and stiffener layout of a composite stiffened panel [J]. Eng. Optim. 51(4), 1–19 (2019)

    Article  Google Scholar 

  17. Gov, I.: A novel approach for design of fiber angle and layer number of composite plates [J]. Polym. Compos. 38(2), 268–276 (2015)

    Article  Google Scholar 

  18. Khosravi, P., Sedaghati, R.: Design of laminated composite structures for optimum fiber direction and layer thickness, using optimality criteria [J]. Struct. Multidiscip. Optim. 36(2), 159–167 (2008)

    Article  Google Scholar 

  19. Fang, C., George, S.: Design of composite laminates by a Monte Carlo method. [J]. Compos Mater. 27(7), 721–753 (1993)

    Article  CAS  Google Scholar 

  20. Wu, X., Fuller, J.D., Longana, M.L., Wisnom, M.R.: Reduced notch sensitivity in pseudo-ductile CFRP thin ply angle-ply laminates with central 0° plies [J]. Composites Part A. 111, 62–72 (2018)

    Article  CAS  Google Scholar 

  21. Fuller, J.D., Jalalvand, M., Wisnom, M.R.: Combining fibre rotation and fragmentation to achieve pseudo-ductile CFRP laminates [J]. Compos. Struct. 142, 155–166 (2016)

    Article  Google Scholar 

  22. Fuller, J.D., Wisnom, M.R.: Exploration of the potential for pseudo-ductility in thin ply CFRP angle-ply laminates via an analytical method [J]. Compos. Sci. Technol. 112, 8–15 (2015)

    Article  CAS  Google Scholar 

  23. Fuller, J., Wisnom, M.: Pseudo-ductility and damage suppression of thin ply CFRP angle-ply laminates [J]. Compos Part A Appl Sci Manuf. 69, 64–71 (2015)

    Article  CAS  Google Scholar 

  24. Ochiai, S., Peters, P.W.M.: Tensile fracture of Centre-notched angle ply (0/±45/0) S and (0/90) 2S graphite — epoxy composites [J]. J. Mater. Sci. 17(2), 417–428 (1982)

    Article  CAS  Google Scholar 

  25. Li, J., Yao, X.F., Liu, Y.H., Chen, S.S., Kou, Z.J., Dai, D.: Curing deformation analysis for the composite T-shaped integrated structures [J]. Appl. Compos. Mater. 15, 207–225 (2008)

    Article  Google Scholar 

  26. Albert, C., Fernlund, G.: Spring-in and warpage of angled composite laminates. Compos. [J]. Compos. Sci. Technol. 62, 1895–1912 (2002)

    Article  CAS  Google Scholar 

  27. Patterson JM, Springer GS, Kollar LP. Experimental observations of the spring-in phenomenon. Proceedings of the 8th international conference on composite materials (ICCM8) 1991:10-D-1–10-D-8

  28. Huang, C.K., Yang, S.Y.: Short communication—warping in advanced composite tools with varying angles and radii. Composites Part A. 8(9–10), 891–893 (1997)

    Article  Google Scholar 

  29. Kim CG, Kim TW, Kim IG, Jun EJ. Spring-in deformation of composite laminated bends. Proceedings of the 7th international conference on composite materials (ICCM7) 1989:83–8

  30. Stephan A, Schwinge E, Muller J, Ory H. On the spring back effect of CFRP stringers: an experimental, analytical and numerical analysis. Proceedings of the 28th International SAMPE Technical Conference, 245–254 (1996)

  31. China National Aviation Research Institute: Composites Structural Design Manual [M]. Aviation Industry Press, Beijing (2001)

    Google Scholar 

  32. Department of Defense. MIL-HDBK-17-3F Composite Materials Handbook Volume 3. Polymer Matrix Composites Materials Usage, Design, and Analysis [M]. (2002)

  33. Michael Chun Yung Niu. Composite Airframe Structures: Practical Design Information and Data [M]. Hong Kong Conmilit Press, 962–7128-06-6, (2005)

  34. Department of aerospace industry, Composite Material Design Manual [M] AVIC industry press 7–80046–307-7 (1990)

  35. Airbus Company. A320 structural repair manual [M]. Airbus (2007)

  36. Tifkitsis, K.I., Mesogitis, T.S., Struzziero, G., Skordos, A.A.: Stochastic multi-objective optimisation of the cure process of thick laminates [J]. Composites Part A. 112, 383–394 (2018)

    Article  CAS  Google Scholar 

  37. Minakuchi, S., Niwa, S., Takagaki, K., Takeda, N.: Composite cure simulation scheme fully integrating internal strain measurement [J]. Composites Part A. 84, 53–63 (2016)

    Article  CAS  Google Scholar 

  38. Raghavan, J.: Evolution of cure, mechanical properties, and residual stress during electron beam curing of a polymer composite [J]. Composites Part A. 40(3), 300–308 (2008)

    Article  Google Scholar 

  39. Zhou, S., Sun, Y., Chen, B., Tay, T.-E.: Progressive damage simulation of open-hole composite laminates under compression based on different failure criteria. J. Compos. Mater. 51(9), 1239–1251 (2016)

    Article  Google Scholar 

  40. Li, S., Sitnikova, E., Liang, Y., Kaddour, A.-S.: The Tsai-Wu failure criterion rationalised in the context of UD composites. Compos. A: Appl. Sci. Manuf. 102, 207–217 (2017)

    Article  Google Scholar 

  41. Engelstad, S.P., Eddy, J.N., Night, N.F.: Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression [J]. AIAA J. 30(8), 2106–2113 (1992)

    Article  Google Scholar 

  42. Academy of Aeronautics, Guide for Stability Analysis of Composite Structures [M]. Beijing: Aviation Industry Press, 7–80134–996-2, (2002)

  43. Schulte, M.J., Omar, J., Swartzlander, E.E.: Optimal initial approximations for the Newton-Raphson division algorithm [J]. Computing. 53(3–4), 233–242 (1994)

    Article  Google Scholar 

  44. Murray, C., Hancock Gregory, J.: A study of incremental iterative strategies for nonlinear analysis. Int. J. Num. Meth, in Eng. 29(7), 1365–1391 (1990)

    Article  Google Scholar 

  45. Li M. Optimal curing of thermoset composites: thermochemical and consolidation considerations. PhD Thesis, University of Illinois at Urbana-Champaign, (2001)

  46. Li, Y., Li, M., Zhang, Z., Gu, Y.: Numerical analysis of parametric effects on consolidation of angle-bended composite laminates. Polym Compos. 30(10), 1510–1516 (2009)

    Article  CAS  Google Scholar 

  47. Standard Guide for Installing Bonded Resistance Strain Gages [S]. ASTM E 1237–93:1–6 (2014)

  48. Michael Chun Yung Niu. Airframe stress analysis and sizing [M]. Hong Kong Conmilit Press, 962–7128-08-2, (1999)

  49. European Aviation Safety Agency. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS-25[S], (2011)

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 51575095, 51675089, and U1708254), and China Postdoctoral Science Foundation (2017 M610180). Thanks to AVIC SAC Commercial Aircraft Co. Ltd. for their supports in the manufacture of specimens and NDT inspection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyang Xie or Changyou Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Xie, L., Li, C. et al. Ananalytical and Experimental Study of T - Shaped Composite Stiffened Panels: Effect of 90° Plies in Stringers on Curing and Buckling Performance. Appl Compos Mater 27, 597–618 (2020). https://doi.org/10.1007/s10443-020-09816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09816-4

Keywords

Navigation