Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amino acid homorepeats in proteins

Abstract

Amino acid homorepeats, or homorepeats, are polypeptide segments found in proteins that contain stretches of identical amino acid residues. Although abnormal homorepeat expansions are linked to pathologies such as neurodegenerative diseases, homorepeats are prevalent in eukaryotic proteomes, suggesting that they are important for normal physiology. In this Review, we discuss recent advances in our understanding of the biological functions of homorepeats, which range from facilitating subcellular protein localization to mediating interactions between proteins across diverse cellular pathways. We explore how the functional diversity of homorepeat-containing proteins could be linked to the ability of homorepeats to adopt different structural conformations, an ability influenced by repeat composition, repeat length and the nature of flanking sequences. We conclude by highlighting how an understanding of homorepeats will help us better characterize and develop therapeutics against the human diseases to which they contribute.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional distribution of homorepeat-containing proteins in yeast and humans.
Fig. 2: Factors influencing the conformation of homorepeats.
Fig. 3: A structural perspective of different types of homorepeats.
Fig. 4: Strategies to target the detrimental effects of homorepeat proteins.

Similar content being viewed by others

References

  1. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mier, P. et al. Disentangling the complexity of low complexity proteins. Brief. Bioinform. 21, 458–472 (2020).

    Article  PubMed  CAS  Google Scholar 

  3. Hannan, A. J. Tandem repeats mediating genetic plasticity in health and disease. Nat. Rev. Genet. 19, 286–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Darling, A. L. & Uversky, V. N. Intrinsic disorder in proteins with pathogenic repeat expansions. Molecules 22, 2027 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  5. MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  6. Chavali, S. et al. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat. Struct. Mol. Biol. 24, 765–777 (2017). By systematically investigating more than 40 different genome-scale datasets pertaining to biochemical, molecular-biology, cell-biology, genetics and genomics experiments, the authors present one of the largest studies of homorepeats and provide insights into their roles in normal physiology, disease and evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paulson, H. Repeat expansion diseases. Handb. Clin. Neurol. 147, 105–123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Usdin, K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res. 18, 1011–1019 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gemayel, R., Vinces, M. D., Legendre, M. & Verstrepen, K. J. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu. Rev. Genet. 44, 445–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Freibaum, B. D. & Taylor, J. P. The role of dipeptide repeats in C9ORF72-related ALS-FTD. Front. Mol. Neurosci. 10, 35 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kajava, A. V. Tandem repeats in proteins: from sequence to structure. J. Struct. Biol. 179, 279–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Paladin, L. et al. RepeatsDB 2.0: improved annotation, classification, search and visualization of repeat protein structures. Nucleic Acids Res. 45, D308–D312 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Tompa, P., Davey, N. E., Gibson, T. J. & Babu, M. M. A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Delucchi, M., Schaper, E., Sachenkova, O., Elofsson, A. & Anisimova, M. A new census of protein tandem repeats and their relationship with intrinsic disorder. Genes 11, 407 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  17. Budworth, H. & McMurray, C. T. A brief history of triplet repeat diseases. Methods Mol. Biol. 1010, 3–17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Inoue, K. & Keegstra, K. A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts. Plant J. 34, 661–669 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Galant, R. & Carroll, S. B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415, 910–913 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Stevens, K. E. & Mann, R. S. A balance between two nuclear localization sequences and a nuclear export sequence governs extradenticle subcellular localization. Genetics 175, 1625–1636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerber, H. P. et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Wolf, A. et al. The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization. Biochem. J. 453, 357–370 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Alvarez, M., Estivill, X. & de la Luna, S. DYRK1A accumulates in splicing speckles through a novel targeting signal and induces speckle disassembly. J. Cell Sci. 116, 3099–3107 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Salichs, E., Ledda, A., Mularoni, L., Alba, M. M. & de la Luna, S. Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment. PLoS Genet. 5, e1000397 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Oma, Y., Kino, Y., Sasagawa, N. & Ishiura, S. Intracellular localization of homopolymeric amino acid-containing proteins expressed in mammalian cells. J. Biol. Chem. 279, 21217–21222 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Jorda, J. & Kajava, A. V. Protein homorepeats: sequences, structures, evolution, and functions. Adv. Protein Chem. Struct. Biol. 79, 59–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Faux, N. G. et al. Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res. 15, 537–551 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcotte, E. M., Pellegrini, M., Yeates, T. O. & Eisenberg, D. A census of protein repeats. J. Mol. Biol. 293, 151–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Golding, G. B. Simple sequence is abundant in eukaryotic proteins. Protein Sci. 8, 1358–1361 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alba, M. M. & Guigo, R. Comparative analysis of amino acid repeats in rodents and humans. Genome Res. 14, 549–554 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mier, P., Alanis-Lobato, G. & Andrade-Navarro, M. A. Context characterization of amino acid homorepeats using evolution, position, and order. Proteins 85, 709–719 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Lobanov, M. Y., Sokolovskiy, I. V. & Galzitskaya, O. V. HRaP: database of occurrence of HomoRepeats and patterns in proteomes. Nucleic Acids Res. 42, D273–D278 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Lobanov, M. Y., Klus, P., Sokolovsky, I. V., Tartaglia, G. G. & Galzitskaya, O. V. Non-random distribution of homo-repeats: links with biological functions and human diseases. Sci. Rep. 6, 26941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schaefer, M. H., Wanker, E. E. & Andrade-Navarro, M. A. Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks. Nucleic Acids Res. 40, 4273–4287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pelassa, I. & Fiumara, F. Differential occurrence of interactions and interaction domains in proteins containing homopolymeric amino acid repeats. Front. Genet. 6, 345 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zarrinpar, A., Bhattacharyya, R. P. & Lim, W. A. The structure and function of proline recognition domains. Sci. STKE 2003, re8 (2003).

    Article  PubMed  Google Scholar 

  37. Chung, T. D., Wymer, J. P., Kulka, M., Smith, C. C. & Aurelian, L. Myristylation and polylysine-mediated activation of the protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virology 179, 168–178 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Moreno, F. J., Lechuga, C. G., Collado, M., Benitez, M. J. & Jimenez, J. S. A polylysine-induced aggregation of substrate accompanies the stimulation of casein kinase II by polylysine. Biochem. J. 289, 631–635 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fiumara, F., Fioriti, L., Kandel, E. R. & Hendrickson, W. A. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 143, 1121–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Spector, D. L. SnapShot: cellular bodies. Cell 127, 1071 (2006).

    Article  PubMed  Google Scholar 

  42. Li, X. H., Chavali, P. L., Pancsa, R., Chavali, S. & Babu, M. M. Function and regulation of phase-separated biological condensates. Biochemistry 57, 2452–2461 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bergeron-Sandoval, L. P., Safaee, N. & Michnick, S. W. Mechanisms and consequences of macromolecular phase separation. Cell 165, 1067–1079 (2016). In this Perspective, the authors discuss the physical principles of phase-separated cellular bodies and explore what molecular interactomes mean in the context of phase-separated droplets.

    Article  CAS  PubMed  Google Scholar 

  45. Decker, C. J., Teixeira, D. & Parker, R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J. Cell Biol. 179, 437–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Hall, A. C., Ostrowski, L. A. & Mekhail, K. Phase separation as a melting pot for DNA repeats. Trends Genet. 35, 589–600 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Toretsky, J. A. & Wright, P. E. Assemblages: functional units formed by cellular phase separation. J. Cell Biol. 206, 579–588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holehouse, A. S. & Pappu, R. V. Collapse transitions of proteins and the interplay among backbone, sidechain, and solvent interactions. Annu. Rev. Biophys. 47, 19–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  51. Murthy, A. C. et al. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ribeiro, S. S., Samanta, N., Ebbinghaus, S. & Marcos, J. C. The synergic effect of water and biomolecules in intracellular phase separation. Nat. Rev. Chem. 3, 552–561 (2019).

    Article  CAS  Google Scholar 

  53. Zaslavsky, B. Y. & Uversky, V. N. In aqua veritas: the indispensable yet mostly ignored role of water in phase separation and membrane-less organelles. Biochemistry 57, 2437–2451 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Zaslavsky, B. Y., Ferreira, L. A., Darling, A. L. & Uversky, V. N. The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int. J. Biol. Macromol. 117, 1224–1251 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Chakrabortee, S. et al. Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell 167, 369–381.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schlissel, G., Krzyzanowski, M. K., Caudron, F., Barral, Y. & Rine, J. Aggregation of the Whi3 protein, not loss of heterochromatin, causes sterility in old yeast cells. Science 355, 1184–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caudron, F. & Barral, Y. A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship. Cell 155, 1244–1257 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Caudron, F. & Barral, Y. Mnemons: encoding memory by protein super-assembly. Microb. Cell 1, 100–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gutiérrez, J. I., Brittingham, G., Wang, X., Fenyö, D. & Holt, L. J. The largest SWI/SNF polyglutamine domain is a pH sensor. Preprint at bioRxiv https://doi.org/10.1101/165043 (2017).

  60. Anan, K. et al. Morphological change caused by loss of the taxon-specific polyalanine tract in Hoxd-13. Mol. Biol. Evol. 24, 281–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Kizawa, H. et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat. Genet. 37, 138–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, C., Occhipinti, P. & Gladfelter, A. S. PolyQ-dependent RNA–protein assemblies control symmetry breaking. J. Cell Biol. 208, 533–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Karlin, S., Chen, C., Gentles, A. J. & Cleary, M. Associations between human disease genes and overlapping gene groups and multiple amino acid runs. Proc. Natl Acad. Sci. USA 99, 17008–17013 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pelassa, I. et al. Compound dynamics and combinatorial patterns of amino acid repeats encode a system of evolutionary and developmental markers. Genome Biol. Evol. 11, 3159–3178 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fondon, J. W. 3rd & Garner, H. R. Molecular origins of rapid and continuous morphological evolution. Proc. Natl Acad. Sci. USA 101, 18058–18063 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van der Lee, R. et al. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep. 8, 1832–1844 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fishbain, S. et al. Sequence composition of disordered regions fine-tunes protein half-life. Nat. Struct. Mol. Biol. 22, 214–221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gsponer, J. & Babu, M. M. Cellular strategies for regulating functional and non-functional protein aggregation. Cell Rep. 2, 1425–1437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhattacharyya, A. et al. Oligoproline effects on polyglutamine conformation and aggregation. J. Mol. Biol. 355, 524–535 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Ruff, K. M., Khan, S. J. & Pappu, R. V. A coarse-grained model for polyglutamine aggregation modulated by amphipathic flanking sequences. Biophys. J. 107, 1226–1235 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jarosz, D. F. & Khurana, V. Specification of physiologic and disease states by distinct proteins and protein conformations. Cell 171, 1001–1014 (2017). In this Review, the authors explore the idea that protein conformational switches can influence normal and abnormal information transfer across generations. They also discuss the concept of conformational ‘alleles’ for proteins in disease and normal physiology.

    Article  CAS  PubMed  Google Scholar 

  72. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Toyama, B. H., Kelly, M. J., Gross, J. D. & Weissman, J. S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Pearce, M. M. P. & Kopito, R. R. Prion-like characteristics of polyglutamine-containing proteins. Cold Spring Harb. Perspect. Med. 8, a024257 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bäuerlein, F. J. B. et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell 171, 179–187.e10 (2017). In this study, the authors report the structure of polyglutamine inclusions in intact neurons using cryoelectron tomography. They report that abnormal interactions between fibrils and endomembranes contribute to the deleterious cellular effects of polyglutamine aggregation.

    Article  PubMed  CAS  Google Scholar 

  76. Urbanek, A. et al. Site-specific isotopic labeling (SSIL): access to high-resolution structural and dynamic information in low-complexity proteins. ChemBioChem 21, 769–775 (2019). In this concept paper, the authors discuss how site-specific isotopic labelling of individual amino acids of homorepeat regions, which combines nonsense suppression and cell-free protein synthesis, could be exploited as a strategy to obtain high-resolution structural information.

    Article  PubMed  CAS  Google Scholar 

  77. Lilliu, E. et al. Polyserine repeats promote coiled coil-mediated fibril formation and length-dependent protein aggregation. J. Struct. Biol. 204, 572–584 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Ohnishi, S., Kamikubo, H., Onitsuka, M., Kataoka, M. & Shortle, D. Conformational preference of polyglycine in solution to elongated structure. J. Am. Chem. Soc. 128, 16338–16344 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Wilhelm, P., Lewandowski, B., Trapp, N. & Wennemers, H. A crystal structure of an oligoproline PPII-helix, at last. J. Am. Chem. Soc. 136, 15829–15832 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Rath, A., Davidson, A. R. & Deber, C. M. The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers 80, 179–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Smyth, E. et al. Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58, 138–151 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Woody, R. W. Circular dichroism and conformation of unordered peptides. Adv. Biophys. Chem. 2, 37–79 (1992).

    CAS  Google Scholar 

  83. Radhakrishnan, A., Vitalis, A., Mao, A. H., Steffen, A. T. & Pappu, R. V. Improved atomistic Monte Carlo simulations demonstrate that poly-l-proline adopts heterogeneous ensembles of conformations of semi-rigid segments interrupted by kinks. J. Phys. Chem. B 116, 6862–6871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Escobedo, A. et al. Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. Nat. Commun. 10, 2034 (2019). In this paper, the authors provide detailed insights into the non-covalent bonds that stabilize the helical conformation of the polyglutamine repeat region of the androgen receptor. They also discuss how the helix stabilization at increased length might promote aggregation of the androgen receptor, providing a molecular explanation for why abnormal repeat expansion is inversely correlated with transcriptional activity, prostate cancer prevalence and increased aggregation propensity in spinal and bulbar muscular atrophy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Leitgeb, B. et al. Studying the structural properties of polyalanine and polyglutamine peptides. J. Mol. Model. 13, 1141–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Esipova, N. G. & Tumanyan, V. G. Omnipresence of the polyproline II helix in fibrous and globular proteins. Curr. Opin. Struct. Biol. 42, 41–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Schuler, B., Lipman, E. A., Steinbach, P. J., Kumke, M. & Eaton, W. A. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. Proc. Natl Acad. Sci. USA 102, 2754–2759 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Best, R. B. et al. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc. Natl Acad. Sci. USA 104, 18964–18969 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Urbanek, A. et al. A general strategy to access structural information at atomic resolution in polyglutamine homorepeats. Angew. Chem. Int. Ed. 57, 3598–3601 (2018).

    Article  CAS  Google Scholar 

  90. Pelassa, I. et al. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum. Mol. Genet. 23, 3402–3420 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gallardo, R., Ranson, N. A. & Radford, S. E. Amyloid structures: much more than just a cross-β fold. Curr. Opin. Struct. Biol. 60, 7–16 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Polling, S. et al. Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. Nat. Struct. Mol. Biol. 22, 1008–1015 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Bravo-Arredondo, J. M. et al. The folding equilibrium of huntingtin exon 1 monomer depends on its polyglutamine tract. J. Biol. Chem. 293, 19613–19623 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vijayvargia, R. et al. Huntingtin’s spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function. Elife 5, e11184 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Crick, S. L., Jayaraman, M., Frieden, C., Wetzel, R. & Pappu, R. V. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc. Natl Acad. Sci. USA 103, 16764–16769 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tran, H. T., Mao, A. & Pappu, R. V. Role of backbone–solvent interactions in determining conformational equilibria of intrinsically disordered proteins. J. Am. Chem. Soc. 130, 7380–7392 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Eftekharzadeh, B. et al. Sequence context influences the structure and aggregation behavior of a PolyQ tract. Biophys. J. 110, 2361–2366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baias, M. et al. Structure and dynamics of the huntingtin exon-1 N-terminus: a solution NMR perspective. J. Am. Chem. Soc. 139, 1168–1176 (2017). In this paper, the authors present structural insights into how the N-terminal flanking region (N17) of huntingtin exon 1 can influence the conformation of the polyglutamine region in a pH-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  100. Totzeck, F., Andrade-Navarro, M. A. & Mier, P. The protein structure context of polyQ regions. PLoS One 12, e0170801 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Jayaraman, M. et al. Kinetically competing huntingtin aggregation pathways control amyloid polymorphism and properties. Biochemistry 51, 2706–2716 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Tam, S. et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 16, 1279–1285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Chiara, C., Menon, R. P., Dal Piaz, F., Calder, L. & Pastore, A. Polyglutamine is not all: the functional role of the AXH domain in the ataxin-1 protein. J. Mol. Biol. 354, 883–893 (2005).

    Article  PubMed  CAS  Google Scholar 

  104. Ceccon, A. et al. Interaction of huntingtin exon-1 peptides with lipid-based micellar nanoparticles probed by solution NMR and Q-band pulsed EPR. J. Am. Chem. Soc. 140, 6199–6202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tao, M., Pandey, N. K., Barnes, R., Han, S. & Langen, R. Structure of membrane-bound huntingtin exon 1 reveals membrane interaction and aggregation mechanisms. Structure 27, 1570–1580.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chiki, A. et al. Mutant exon1 huntingtin aggregation is regulated by T3 phosphorylation-induced structural changes and crosstalk between T3 phosphorylation and acetylation at K6. Angew. Chem. Int. Ed. 56, 5202–5207 (2017).

    Article  CAS  Google Scholar 

  107. Yalinca, H. et al. The role of post-translational modifications on the energy landscape of Huntingtin N-terminus. Front. Mol. Biosci. 6, 95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhong, Q. et al. Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5, 321 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sahni, N. et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161, 647–660 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sahni, N. et al. Edgotype: a fundamental link between genotype and phenotype. Curr. Opin. Genet. Dev. 23, 649–657 (2013). In this Review, the authors discuss network approaches to understand why different mutations on the same protein can result in distinct phenotypes. They explore the idea that these different mutations might disrupt distinct sets of interactions mediated by the same protein, thereby perturbing different phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Romero-Brey, I. 3D electron microscopy (EM) and correlative light electron microscopy (CLEM) methods to study virus–host interactions. Methods Mol. Biol. 1836, 213–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Matlahov, I. & van der Wel, P. C. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington’s disease. Exp. Biol. Med. 244, 1584–1595 (2019).

    Article  CAS  Google Scholar 

  114. Adegbuyiro, A., Sedighi, F., Pilkington, A. W. IV, Groover, S. & Legleiter, J. Proteins containing expanded polyglutamine tracts and neurodegenerative disease. Biochemistry 56, 1199–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Gruber, A. et al. Molecular and structural architecture of polyQ aggregates in yeast. Proc. Natl Acad. Sci. USA 115, E3446–E3453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Doherty, C. P. A. et al. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat. Struct. Mol. Biol. 27, 249–259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Hosp, F. et al. Spatiotemporal proteomic profiling of Huntington’s disease inclusions reveals widespread loss of protein function. Cell Rep. 21, 2291–2303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Park, S. H. et al. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154, 134–145 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Basu, S. et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062–1079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Persi, E. et al. Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues. Proc. Natl Acad. Sci. USA 116, 16987–16996 (2019). In this paper, the authors analyze repeat-instability signatures in diverse cancers and propose an evolutionary model of repeat dynamics in cancer and normal tissues. Specifically, they highlight that properties of homorepeats contain sufficient information to discriminate healthy and tumour samples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Perkel, J. M. Viral mediated gene delivery. Science https://www.sciencemag.org/posters/viral-mediated-gene-delivery (2014).

  124. Mout, R. et al. General strategy for direct cytosolic protein delivery via protein–nanoparticle co-engineering. ACS Nano 11, 6416–6421 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, H. H. & Tsourkas, A. Cytosolic delivery of inhibitory antibodies with cationic lipids. Proc. Natl Acad. Sci. USA 116, 22132–22139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Clift, D. et al. A method for the acute and rapid degradation of endogenous proteins. Cell 171, 1692–1706.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Clift, D., So, C., McEwan, W. A., James, L. C. & Schuh, M. Acute and rapid degradation of endogenous proteins by Trim-Away. Nat. Protoc. 13, 2149–2175 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020). In this Review, the authors discuss the proteolysis-targeting chimeras (PROTACs) technology, describe workflow for PROTACs development and compare PROTACs with other technologies, such as RNAi and genome editing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fischer, E. S., Park, E., Eck, M. J. & Thoma, N. H. SPLINTS: small-molecule protein ligand interface stabilizers. Curr. Opin. Struct. Biol. 37, 115–122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun, X. et al. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov. 5, 10 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Bussiere, D. E. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tomoshige, S., Nomura, S., Ohgane, K., Hashimoto, Y. & Ishikawa, M. Discovery of small molecules that induce the degradation of huntingtin. Angew. Chem. Int. Ed. 56, 11530–11533 (2017).

    Article  CAS  Google Scholar 

  137. Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature 575, 203–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Djajadikerta, A. et al. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J. Mol. Biol. 432, 2799–2821 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Jackrel, M. E. et al. Potentiated Hsp104 variants antagonize diverse proteotoxic misfolding events. Cell 156, 170–182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Santarriaga, S. et al. The social amoeba Dictyostelium discoideum is highly resistant to polyglutamine aggregation. J. Biol. Chem. 290, 25571–25578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Malinovska, L., Palm, S., Gibson, K., Verbavatz, J. M. & Alberti, S. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc. Natl Acad. Sci. USA 112, E2620–E2629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Santarriaga, S. et al. SRCP1 conveys resistance to polyglutamine aggregation. Mol. Cell 71, 216–228.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Aravind, L., Iyer, L. M., Wellems, T. E. & Miller, L. H. Plasmodium biology: genomic gleanings. Cell 115, 771–785 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Nakamori, M. et al. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat. Genet. 52, 146–159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Erwin, G. S. et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 358, 1617–1622 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Denison, C. & Kodadek, T. Small-molecule-based strategies for controlling gene expression. Chem. Biol. 5, R129–R145 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Ravarani, C. N. et al. High-throughput discovery of functional disordered regions: investigation of transactivation domains. Mol. Syst. Biol. 14, e8190 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Gemayel, R. et al. Variable glutamine-rich repeats modulate transcription factor activity. Mol. Cell 59, 615–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Roberts, S. et al. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17, 1154–1163 (2018).In this paper, the authors demonstrate that artificial proteins containing disordered homorepeat segments and ordered segments can respond to body heat by forming solid scaffolds and integrate into tissues over time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. L. Chavali, X. Li, A. Hummer and W. Orchard for critically reading the manuscript. This work was supported by the UK Medical Research Council (MC_U105185859; M.M.B., S.C. and B.S.), a European Research Council Consolidator Grant (ERC-COG-2015-682414), a Core grant (S.C.) and Fellowship (A.K.S.) from the Indian Institute of Science Education and Research (IISER) Tirupati. S.C. was supported by the Department of Biotechnology (Ramalingaswami Re-entry Fellowship BT/RLF/Re-entry/05/2018) and the Science and Engineering Research Board (SRG/2019/001785), Government of India. M.M.B. is supported by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Contributions

S.C. and M.M.B. designed the outline of the manuscript and figures, performed the literature search and wrote the manuscript. B.S. retrieved structural attributes of homorepeats from the Protein Data Bank. S.C. made all the figures. A.K.S. performed the analysis of homorepeat enrichment in the various biological processes and was involved in making figures 1 and 4.

Corresponding authors

Correspondence to Sreenivas Chavali or M. Madan Babu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks P. Bernadó, V. Uversky and S. Michnick for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

A Nature Outlook collection on RNA therapies: https://www.nature.com/collections/eagjficbbf

Supplementary information

Glossary

Low-complexity sequence

A sequence with a lower residue diversity than random expectation. Such a sequence tends to contain repeats of a particular residue or is enriched in a few different residues.

Amino acid homorepeat

Or ‘homorepeat’. Protein region consisting of a stretch of identical amino acid residues.

Proteome

The complete set of proteins expressed by a cell or organism.

Genome

The complete genetic material of an organism.

Trinucleotide repeat expansions

Mutations in which repeats of three nucleotides increase in numbers.

Trinucleotide repeat disorders

Genetic disorders arising from abnormal expansion of trinucleotide repeats.

Phenotype

The measurable and observable characteristics of an organism. Determined by the genetic make-up of the organism and the environment.

Protein kinase

An enzyme that post-translationally adds a phosphate group to a Ser, Thr or Tyr residue on its substrate proteins.

Epigenetic

Refers to molecular processes that influence the flow of information between a constant DNA sequence and variable gene-expression patterns; for instance, chemical modification of the DNA or the activity of DNA-associated proteins.

Asymmetric inheritance

Unequal distribution of cellular material between daughter cells after cell division.

Cell cycle

The orchestrated set of events pertaining to the growth and division of a cell.

Genetic variation

Variation in the DNA sequence between different individuals in a population.

Molecular chaperones

Proteins that assist with the folding of other macromolecules in a cell to ensure their proper function.

Synpolydactyly

Limb malformation characterized by fused fingers or toes (syndactyly) and supplementary digits (polydactyly).

Somatic mosaicism

Condition in which cells within a multicellular organism differ genetically because of mutations that arise spontaneously during development or during the lifetime of an individual.

E3 ligase

An enzyme that catalyses the ubiquitylation of substrate proteins. Tripartite motif (TRIM) proteins constitute one of the largest subfamily of E3 ligases involved in the immune response.

Proteasomal degradation

Degradation of ubiquitylated proteins through the cleavage of peptide bonds by the 26S proteasome.

Ubiquitylation

Post-translational enzymatic addition of the ubiquitin protein to diverse substrate proteins.

Autophagosome

A double-membraned vesicle that contains cellular contents destined for autophagy.

Autophagy

A cellular process by which cellular material, such as protein aggregates and damaged organelles, are encapsulated and digested in a cell.

Slipped DNA intermediates

Non-canonical DNA structures that arise during transcription, replication or repair, primarily at repetitive regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavali, S., Singh, A.K., Santhanam, B. et al. Amino acid homorepeats in proteins. Nat Rev Chem 4, 420–434 (2020). https://doi.org/10.1038/s41570-020-0204-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0204-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing