Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 28, 2019

Quantum chemical studies of selective back-extraction of Am(III) from Eu(III) and Cm(III) with two hydrophilic 1,10-phenanthroline-2,9-bis-triazolyl ligands

  • Pin-Wen Huang , Cong-Zhi Wang , Qun-Yan Wu , Jian-Hui Lan , Zhi-Fang Chai and Wei-Qun Shi EMAIL logo
From the journal Radiochimica Acta

Abstract

We theoretically investigated the selective back-extraction towards Am(III) over Eu(III) and Cm(III) with two water-soluble 2,9-bis-triazolyl-1,10-phenanthroline derivatives BTrzPhen1 (with two ethanol side chains) and BTrz-Phen2 (with two 1,2-butanediol side chains) by density functional theory (DFT). The molecular geometries and formation reactions of the metal-ligand complexes were modeled by using M(BTrzPhen)(NO3)3 and [M(BTrzPhen)2(NO3)]2+. Am(III) selectivity over Eu(III) and Cm(III) with BTrzPhen2 was successfully reproduced by back-extraction reaction free energy analysis. Moreover, bonding properties between the metal cations and coordinated ligands (model complexes) were studied in terms of Mayer bond order and quantum theory of atoms in molecule (QTAIM). The difference in covalency between An–N and Eu–N bonds were found to be the key factors for Am(III)/Eu(III) separation, while the Am(III) selectivity over Cm(III) of BTrzPhen2 might be attributed to the competition of donor atoms for cation binding preference toward Am(III) and Cm(III).

Award Identifier / Grant number: 21906152

Award Identifier / Grant number: 21876174

Award Identifier / Grant number: 11875058

Award Identifier / Grant number: 11575212

Funding statement: This study was supported by the National Natural Science Foundation of China (Grant Nos. 21906152, 21876174, 11875058, 11575212), Major Program of National Natural Science Foundation of China (21790373), the Science Challenge Project (TZ2016004) and China Postdoctoral Science Foundation (Grant No. 2017M610995). This work is also funded by the Scientific Research Fund of Zhejiang Provincial Education department (Y201738897). The results described in this study were obtained on the ScGrid of the Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

  1. Notes: The authors declare no competing financial interest.

References

1. Salvatores, M., Palmiotti, G.: Thermal modeling of thorium sphere-pac fuel in an annular pin design. Prog. Part. Nucl. Phys. 66, 144 (2011).10.1016/j.ppnp.2010.10.001Search in Google Scholar

2. Wang, X., Li, J., Dai, S., Hayat, T., Alsaedi, A., Wang, X.: Interactions of Eu(III) and 243Am(III) with humic acid-bound γ-Al2O3 studied using batch and kinetic dissociation techniques. Chem. Eng. J. 273, 588 (2015).10.1016/j.cej.2015.03.099Search in Google Scholar

3. Lebreton, F., Prieur, D., Horlait, D., Delahaye, T., Jankowiak, A., Leorier, C., Jorion, F., Gavilan, E., Desmoulière, F.: Recent progress on minor-actinide-bearing oxide fuel fabrication at CEA Marcoule. J. Nucl. Mater. 438, 99 (2013).10.1016/j.jnucmat.2013.02.079Search in Google Scholar

4. Lewis, F. W., Harwood, L. M., Hudson, M. J., Geist, A., Kozhevnikov, V. N., Distler, P., John, J.: Hydrophilic sulfonated bis-1,2,4-triazine ligands are highly effective reagents for separating actinides(III) from lanthanides(III) via selective formation of aqueous actinide complexes. Chem. Sci. 6, 4812 (2015).10.1039/C5SC01328CSearch in Google Scholar PubMed PubMed Central

5. Vlaisavljevich, B., Miro, P., Cramer, C. J., Gagliardi, L., Infante, I., Liddle, S.: On the nature of actinide-and lanthanide-metal bonds in heterobimetallic compounds. Chem. Eur. J. 17, 8424 (2011).10.1002/chem.201100774Search in Google Scholar PubMed

6. Leoncini, A., Huskens, J., Verboom, W.: Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 46, 7229 (2017).10.1039/C7CS00574ASearch in Google Scholar

7. Panak, P. J., Geist, A.: Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 113, 1199 (2013).10.1021/cr3003399Search in Google Scholar PubMed

8. Zhu, Y., Chen, J., Jiao, R.: Extraction of Am(III) and Eu(III) from nitrate solution with purified Cyanex 301. Solvent Extr. Ion Exch. 14, 61 (1996).10.1080/07366299608918326Search in Google Scholar

9. Afsar, A., Harwood. L. M., Hudson, M. J., Westwood, J., Geist, A.: Effective separation of the actinides Am(III) and Cm(III) by electronic modulation of bis-(1,2,4-triazin-3-yl)phenanthrolines. Chem. Commun. 51, 5860 (2015).10.1039/C5CC00567ASearch in Google Scholar PubMed

10. Borrini, J., Favre-Reguillon, A., Lemaire, M., Graciaa, S., Arracharta, G., Bernierc, G., Pellet-Rostaing, S.: Water soluble PDCA derivatives for selective Ln(III)/An(III) and Am(III)/Cm(III) separation. Solvent Extr. Ion Exch. 33, 224 (2015).10.1080/07366299.2014.974449Search in Google Scholar

11. Kooyman, T., Buiron, L., Rimpault, G.: A comparison of curium, neptunium and americium transmutation feasibility. Annal. Nucl. Energ. 112, 748 (2018).10.1016/j.anucene.2017.09.041Search in Google Scholar

12. Wagner, C., Müllich, U., Geist A., Panak, P. J.: TRLFS study on the complexation of Cm(III) and Eu(III) with SO3-Ph-BTBP. Dalton Trans. 44, 17143 (2015).10.1039/C5DT02923FSearch in Google Scholar

13. Boubals, N., Wagner, C., Dumas, T., Chanéac, L., Manie, G., Kaufholz, P., Marie, C., Panak, P. J., Modolo, G., Geist, A., Guilbaud, P.: Complexation of actinide(III) and lanthanide(III) with H4TPAEN for a separation of americium from curium and lanthanides. Inorg. Chem. 56, 7861 (2017).10.1021/acs.inorgchem.7b00603Search in Google Scholar PubMed

14. Edwards, A. C., Mocilac, P., Geist, A., Harwood, L. M., Sharrad, C. A., Burton, N. A., Whitehead, R. C., Denecke, M.A.: Hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline ligands enable selective Am(III) separation: a step further towards sustainable nuclear energy. Chem. Commun. 53, 5001 (2017).10.1039/C7CC01855JSearch in Google Scholar PubMed

15. Wu, H., Wu, Q.-Y., Wang, C.-Z., Lan, J.-H., Liu, Z.-R., Chai, Z.-F., and Shi, W.-Q.: New insights into the selectivity of four 1,10-phenanthroline-derived ligands toward the separation of trivalent actinides and lanthanides: a DFT based comparison study. Dalton Trans. 45, 8107 (2016).10.1039/C6DT00296JSearch in Google Scholar

16. Reilly, S. D., Su, J., Keith, J. M., Yang, P., Batista, E. R., Gaunt, A. J., Harwood, L. M., Hudson, M. J., Lewis, F. W., Scott, B. L., Sharrad, C. A., Whittaker, D. M.: Plutonium coordination and redox chemistry with the CyMe4-BTPhen polydentate N-donor extractant ligand. Chem. Commun. 54, 12582 (2018).10.1039/C8CC06015KSearch in Google Scholar PubMed

17. Lan, J.-H., Wu, Q.-Y., Wang, C.-Z., Chai, Z.-F., Shi, W.-Q.: Influence of complexing species on the extraction of trivalent actinides from lanthanides with CyMe4-BTBP: a theoretical study. J. Radioanal. Nucl. Chem. 318, 1453 (2018).10.1007/s10967-018-6263-9Search in Google Scholar

18. Xiao, C.-L., Wang, C.-Z., Yuan, L.-Y., Li, B., He, H., Wang, S., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q.: Quantum chemistry study of U(VI), Np(V) and Pu(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Inorg. Chem. 53, 1712 (2014).10.1021/ic402784cSearch in Google Scholar PubMed

19. Cao, X., Heidelberg, D., Ciupka, J., Dolg, M.: First-principles study of the separation of AmIII/CmIII from EuIII with Cyanex301. Inorg. Chem. 49, 10307 (2010).10.1021/ic100844tSearch in Google Scholar PubMed

20. Ustynyuk, Yu. A., Alyapyshev, M. Yu., Babain, V. A., Ustynyuk, N. A.: Quantum chemical modelling of extraction separation of minor actinides and lanthanides: the state of the art. Russ. Chem. Rev. 85, 917 (2016).10.1070/RCR4588Search in Google Scholar

21. Huang, Q.-R., Kingham, J. R., Kaltsoyannis, N.: The strength of actinide–element bonds from the quantum theory of atoms-in-molecules. Dalton Trans. 44, 2554 (2015).10.1039/C4DT02323DSearch in Google Scholar

22. Kaneko, M., Suzuki, H., Matsumura, T.: Theoretical elucidation of Am(III)/Cm(III) separation mechanism with diamide-type ligands using relativistic density functional theory calculation. Inorg. Chem. 57, 14513 (2018).10.1021/acs.inorgchem.8b01624Search in Google Scholar PubMed

23. Huang, P.-W., Wang, C.-Z., Wu, Q.-Y., Lan, J.-H., Song, G., Chai, Z.-F., Shi, W.-Q.: Understanding Am3+/Cm3+ separation with H4TPAEN and its hydrophilic derivatives: a quantum chemical study. Phys. Chem. Chem. Phys. 20, 14031 (2018).10.1039/C7CP08441BSearch in Google Scholar PubMed

24. Yu, J., Ma, J., Yang, C., Yu, H.: Binding affinity of pyridines with AmIII/CmIII elucidated by density functional theory calculations. Dalton Trans. 48, 1613 (2019).10.1039/C8DT04669GSearch in Google Scholar

25. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E. Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J.: Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2013).Search in Google Scholar

26. Perdew, J. P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 16533 (1996).10.1103/PhysRevB.54.16533Search in Google Scholar PubMed

27. Perdew, J. P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 33, 8822 (1986).10.1103/PhysRevB.33.8822Search in Google Scholar PubMed

28. Shamov, G. A., Schreckenbach, G., Martin R. L., Hay, P. J.: Crown ether inclusion complexes of the early actinide elements, [AnO2(18-crown-6)]n+, An=U, Np, Pu and n=1, 2: a relativistic density functional study. Inorg. Chem. 47, 1465 (2008).10.1021/ic7015403Search in Google Scholar PubMed

29. Wang, C.-Z., Shi, W.-Q., Lan, J.-H., Zhao, Y.-L., Wei, Y.-Z., Chai, Z.-F.: Complexation behavior of Eu(III) and Am(III) with CMPO and Ph2CMPO ligands: insights from density functional theory. Inorg. Chem. 52, 10904 (2013).10.1021/ic400895dSearch in Google Scholar PubMed

30. Kaneko, M., Watanabe, M., Matsumura, T.: The separation mechanism of Am(III) from Eu(III) by diglycolamide and nitrilotriacetamide extraction reagents using DFT calculations. Dalton Trans. 45, 17530 (2016).10.1039/C6DT03002ESearch in Google Scholar

31. Dolg, M., Stoll, H., Preuss, H.: Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys. 90, 1730 (1989).10.1063/1.456066Search in Google Scholar

32. Badenhoop, J. K., Weinhold, F.: Natural bond orbital analysis of steric interactions. J. Chem. Phys. 107, 5406 (1997).10.1063/1.474248Search in Google Scholar

33. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).10.1016/0263-7855(96)00018-5Search in Google Scholar

34. Whittaker, D. M., Griffiths, T. L., Madeleine, H., Swinburne, A. N., Natrajan, L. S., Lewis, F. W., Harwood, L. M., Parry, S. A., Sharrad, C. A.: Lanthanide speciation in potential SANEX and GANEX actinide/lanthanide separations using tetra-N-donor extractants. Inorg. Chem. 52, 3429 (2013).10.1021/ic301599ySearch in Google Scholar PubMed

35. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G., Desreux, J. F., Vidick, G., Bouslimani, N., Modolo, G., Wilden, A., Sypula, M., Vu, T. H., Simonin, J. P.: Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J. Am. Chem. Soc. 133, 13093 (2011).10.1021/ja203378mSearch in Google Scholar PubMed

36. Narbutt, J., Ozimunski, W. P.: Selectivity of bis-triazinyl bipyridine ligands for americium (III) in Am/Eu separation by solvent extraction. Part 1. Quantum mechanical study on the structures of BTBP complexes and on the energy of the separation. Dalton Trans. 41, 14416 (2012).10.1039/c2dt31503cSearch in Google Scholar PubMed

37. Klamt, A., Schüürmann, G.: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799 (1993).10.1039/P29930000799Search in Google Scholar

38. Andzelm, J., Kölmel, C., Klamt, A.: Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312 (1995).10.1063/1.469990Search in Google Scholar

39. Wu, H., Wu, Q.-Y., Wang, C.-Z., Lan, J.-H., Liu, Z.-R., Chai, Z.-F., and Shi, W.-Q.: Theoretical insights into the separation of Am(III) over Eu(III) with PhenBHPPA. Dalton Trans. 44, 16737 (2015).10.1039/C5DT02528ASearch in Google Scholar PubMed

40. Ansari, S. A., Pathak, P. N., Manchanda, V. K., Husain, M., Prasad, A. K., Parmar, V. S.: N,N,N′,N′-Tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Sol. Extra. Ion Exch. 23, 463 (2005).10.1081/SEI-200066296Search in Google Scholar

41. Ansari, S. A., Pathak, P. N., Husain, M., Prasad, A. K., Parmar, V. S., Manchanda, V. K.: Extraction chromatographic studies of metal ions using N,N,N′,N′-tetraoctyl diglycolamide as the stationary phase. Talanta, 68, 1273 (2006).Search in Google Scholar

42. Wang, C.-Z., Lan, J.-H., Wu, Q.-Y., Zhao, Y.-L., Wang, X.-K., Chai, Z.-F., Shi, W.-Q.: Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides. Dalton Trans. 43, 8713 (2014).10.1039/c4dt00032cSearch in Google Scholar PubMed

43. Ali, Sk. M., Pahan, S., Bhattacharyya, A., Mohapatra, P. K.: Complexation thermodynamics of diglycolamide with f-elements: solvent extraction and density functional theory analysis. Phys. Chem. Chem. Phys. 18, 9816 (2016).10.1039/C6CP00825ASearch in Google Scholar

44. Pahan, S., Boda, A., Ali, Sk. M.: Density functional theoretical analysis of structure, bonding, interaction and thermodynamic selectivity of hexavalent uranium (UO22+) and tetravalent plutonium (Pu4+) ion complexes of tetramethyl diglycolamide (TMDGA). Theor. Chem. Acc. 134, 41-1 (2015).Search in Google Scholar

45. Mayer, I.: Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 97, 270 (1983).10.1016/0009-2614(83)80005-0Search in Google Scholar

46. Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).10.1002/jcc.22885Search in Google Scholar

47. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).10.1107/S0021889811038970Search in Google Scholar

48. Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751 (1976).10.1107/S0567739476001551Search in Google Scholar

49. Bader, R. F. W., Matta, C. F.: Atomic charges are measurable quantum expectation values: a rebuttal of criticisms of QTAIM charges. J. Phys. Chem. A 108, 8385 (2014).10.1021/jp0482666Search in Google Scholar

50. Kaltsoyannis, N.: Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407 (2013).10.1021/ic3006025Search in Google Scholar

51. Dognon, J. P.: Electronic structure theory to decipher the chemical bonding in actinide systems. Coord. Chem. Rev. 344, 150 (2017).10.1016/j.ccr.2017.02.003Search in Google Scholar

52. Wellington, J. P. W., Kerridge, A., Kaltsoyannis, N.: Should environmental effects be included when performing QTAIM calculations on actinide systems? A comparison of QTAIM metrics for Cs2UO2Cl4, U(Se2PPh2)4 and Np(Se2PPh2)4 in gas phase, COSMO and PEECM. Polyhedron 116, 57 (2016).10.1016/j.poly.2016.02.048Search in Google Scholar

53. Espinosa, E., Molins, E., Lecomte, C.: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285, 170 (1998).10.1016/S0009-2614(98)00036-0Search in Google Scholar

54. Cremer, D., Kraka, E.: Chemical bonds without bonding electron density-does the difference electron-density analysis suffice for a description of the chemical bond? Angew. Chem. Int. Ed. 23, 627 (1984).10.1002/anie.198406271Search in Google Scholar

55. Pearson, R. G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533 (1963).10.1021/ja00905a001Search in Google Scholar

56. Siekierski, S.: The complex formation-partition and partition-association models of solvent extraction of ions. J. Radioanal. Chem. 31, 335 (1976).10.1007/BF02516486Search in Google Scholar

57. Steppert, M., Cisarova, I., Fanghänel, T., Geist, A., Lindqvist-Reis, P., Panak, P., Stepnicka, P., Trumm, S., Walther, C.: Complexation of Europium(III) by Bis(dialkyltriazinyl) bipyridines in 1-Octanol. Inorg. Chem. 51, 591 (2012).10.1021/ic202119xSearch in Google Scholar PubMed

58. Ho, J., Klamt, A., Coote, M. L.: Comment on the correct use of continuum solvent models. J. Phys. Chem. A 114, 13442 (2010).10.1021/jp107136jSearch in Google Scholar PubMed

59. Panak, P. J.n., Geist, A: Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 113, 1199 (2013).10.1021/cr3003399Search in Google Scholar PubMed

Received: 2019-08-06
Accepted: 2019-10-30
Published Online: 2019-11-28
Published in Print: 2020-07-28

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3197/html
Scroll to top button