Skip to main content
Log in

Resonance Radar Absorber Matched with Free Space at a Given Frequency

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—A resonance radar absorber is proposed that is theoretically matched with the free space for a reflection coefficient level no greater than –40 dB at a given frequency. The design of the absorber is an array of electrically conductive squares on a lossy dielectric layer metallized on the opposite side of the array. A preset dielectric is used in the absorber design, and the dimensions of the square elements of the array are many times greater than the thickness of the dielectric layer. The relative change in the resonance frequency with a change in the angle of incidence of TE- and TM-polarized waves in range of 0°–45° does not exceed 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. A. Stergiou, M. Y. Koledintseva, and K. N. Rozanov, Hybrid Polymer Composite Materials: Applications, Woodhead Publ, 53 (2017).

  2. L. B. Kong, Z. W. Li, L. Liu, et al., Int. Mater. Rev. 58, 203 (2013).

    Article  Google Scholar 

  3. S. N. Starostenko, A. P. Vinogradov, and S. G. Kibets, Radiotekh. Elektron. (Moscow) 44, 817 (1999).

    Google Scholar 

  4. A. V. Lopatin, N. E. Kazantseva, Yu. N. Kazantsev, O. A. D’yakonova, J. Viláková, and P. Sáha, J. Commun. Technol. Electron. 53, 487 (2008).

    Article  Google Scholar 

  5. Yu. N. Kazantsev, V. A. Babayan, N. E. Kazantseva, O. A. D’yakonova, R. Mouchka, Ya. Viláková, and P. Sáha, J. Commun. Technol. Electron. 58, 233 (2013).

    Article  Google Scholar 

  6. A. V. Lopatin, Yu. N. Kazantsev, N. E. Kazantseva, V. N. Apletalin, V. P. Mal’tsev, A. D. Shatrov, and P. Saha, J. Commun. Technol. Electron. 53, 1114 (2008).

    Article  Google Scholar 

  7. Y. N. Kazantsev, A. V. Lopatin, N. E. Kazantseva, et al., IEEE Trans. Antennas Propag. 58, 1227 (2010).

    Article  Google Scholar 

  8. V. A. Babayan, Yu. N. Kazantsev, A. V. Lopatin, V. P. Mal’tsev, and N. E. Kazantseva, J. Commun. Technol. Electron. 56, 1357 (2011).

    Article  Google Scholar 

  9. H. Xu, Sh. Bie, J. Jiang, et al., J. Electromagn. Waves Appl. 29 (1), 60 (2015).

    Article  Google Scholar 

  10. L. Zhang, P. Zhou, H. Zhang, et al., IEEE Trans. Magn. 50 (5), 4004305−1 (2014).

    Google Scholar 

  11. Yu. N. Kazantsev, Radiotekh. Elektron. (Moscow) 4, 1480 (1959).

    Google Scholar 

  12. L. A. Vainshtein, Theory of Diffraction and the Factorization Method (Sovetskoe Radio, Moscow, 1966) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the state task, project no. 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Kazantsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazantsev, Y.N., Kraftmakher, G.A., Maltsev, V.P. et al. Resonance Radar Absorber Matched with Free Space at a Given Frequency. J. Commun. Technol. Electron. 65, 579–583 (2020). https://doi.org/10.1134/S1064226920060157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920060157

Navigation