Skip to main content
Log in

Thermal Conductivity of Graphene Oxide: A Molecular Dynamics Study

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The thermal properties of graphene oxide containing hydroxyl and epoxy functional groups were studied using non-equilibrium molecular dynamics to understand the thermal transport phenomena involved and the structure factors limiting heat conduction. Estimates were given in terms of phonon mean free paths for the reduction in thermal conductivity by interior defects due to scattering. The mechanism of phonon transport in the graphene oxide was discussed. The results indicated that the degree of oxidation can significantly affect the thermal performance of graphene oxide. A low degree of oxidation is necessary to enhance the phonon transport properties of graphene oxide and reduce the probability of phonon-defect scattering. Phonon transport in graphene oxide with a high degree of oxidation is governed by the mean free path of phonons associated with scattering from interior defects. Oxygen-containing functional groups can adversely affect performance and reduce the efficiency of phonon transport in graphene oxide due to phonon mean free paths limited mainly by interior defects. The calculated intrinsic thermal conductivity of graphene oxide at room temperature is about 72 W/(m K) with an oxidation degree of 0.35 and about 670 W/(m K) with an oxidation degree of 0.05. The phonon mean free path decreases with increasing the degree of oxidation due to enhanced phonon-defect scattering, making the thermal conductivity very sensitive to the concentration of oxygen-containing functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. A. K. Geim, Science (Washington, DC, U. S.) 324 (5934), 1530 (2009).

    Article  ADS  Google Scholar 

  3. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

  4. S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).

    Article  ADS  Google Scholar 

  5. S. P. Clark, Jr., Handbook of Physical Constants (Geol. Soc. America, New York, 1966).

    Google Scholar 

  6. C. Y. Ho, R. W. Powell, and P. E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972).

    Article  ADS  Google Scholar 

  7. W. Lu, P. Soukiassian, and J. Boeckl, MRS Bull. 37, 1119 (2012).

    Article  Google Scholar 

  8. W. Feng, M. Qin, and Y. Feng, Carbon 109, 575 (2016).

    Article  Google Scholar 

  9. H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng, and F. Kang, Joule 2, 442 (2018).

    Article  Google Scholar 

  10. W. Li, Y. Huang, Y. Liu, M. C. Tekell, and D. Fan, Nano Today 29, 100799 (2019).

    Article  Google Scholar 

  11. E. Pop, V. Varshney, and A. K. Roy, MRS Bull. 37, 1273 (2012).

    Article  Google Scholar 

  12. A. A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  ADS  Google Scholar 

  13. Y. Ouyang, S. Sanvito, and J. Guo, Surf. Sci. 605, 1643 (2011).

    Article  ADS  Google Scholar 

  14. T. Ma, Z. Liu, J. Wen, Y. Gao, X. Ren, H. Chen, C. Jin, X.-L. Ma, N. Xu, H.-M. Cheng, and W. Ren, Nat. Commun. 8, 14486 (2017).

    Article  ADS  Google Scholar 

  15. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Prog. Mater. Sci. 57, 1061 (2012).

    Article  Google Scholar 

  16. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  Google Scholar 

  17. Q.-X. Pei, Z.-D. Sha, and Y.-W. Zhang, Carbon 49, 4752 (2011).

    Article  Google Scholar 

  18. W. Huang, Q.-X. Pei, Z. Liu, and Y.-W. Zhang, Chem. Phys. Lett. 552, 97 (2012).

    Article  ADS  Google Scholar 

  19. C.-J. Shih, S. Lin, R. Sharma, M. S. Strano, and D. Blankschtein, Langmuir 28, 235 (2012).

    Article  Google Scholar 

  20. I. Chowdhury, M. C. Duch, N. D. Mansukhani, M. C. Hersam, and D. Bouchard, Environm. Sci. Technol. 47, 6288 (2013).

    Article  ADS  Google Scholar 

  21. J. N. Hu, S. Schiffli, A. Vallabhaneni, X. L. Ruan, and Y. P. Chen, Appl. Phys. Lett. 97, 133107 (2010).

    Article  ADS  Google Scholar 

  22. J. Y. Kim, J.-H. Lee, and J. C. Grossman, ACS Nano 6, 9050 (2012).

    Article  Google Scholar 

  23. F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997).

    Article  ADS  Google Scholar 

  24. S. Plimpton, J. Computat. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  25. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

    Article  ADS  Google Scholar 

  26. M. Ye, Z. Zhang, Y. Zhao, and L. Qu, Joule 2, 245 (2018).

    Article  Google Scholar 

Download references

Funding

work was supported by the National Natural Science Foundation of China (grant no. 51506048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Chen or L. Li.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, L. Thermal Conductivity of Graphene Oxide: A Molecular Dynamics Study. Jetp Lett. 112, 117–121 (2020). https://doi.org/10.1134/S0021364020140015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020140015

Navigation