Skip to main content
Log in

Oil Reservoir on a Chip: Pore-Scale Study of Multiphase Flow During Near-Miscible CO2 EOR and Storage

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

CO2 injection into oil reservoirs is widely accepted as an effective enhanced oil recovery and CO2 storage technique. While oil recovery and CO2 storage potential of this technique have been studied extensively at the core-scale, complex multiphase flow and fluid–fluid interactions at the pore scale during near-miscible CO2 injection have not, and this area needs more study. To address this, a unique high-pressure microfluidic system was implemented which allows for the optical visualisation of the flow using optical microscopy. The results show that during tertiary near-miscible CO2 injection, when CO2 phase contacts the oil, the oil spreads as a layer between the CO2 phase and water preventing CO2 phase from contacting the water phase. This is attributed to the positive value of the spreading coefficient. Furthermore, due to the presence of pore-scale heterogeneity in the chip, an early breakthrough of CO2 was observed causing a large amount of oil to be bypassed. However, after CO2 breakthrough, CO2 gradually started to diffuse and flow inside the bypassed oil zones in the transverse directions which is a characteristic of capillary crossflow. The driving force for this capillary crossflow was the interfacial tension gradient formed by the diffusion of CO2 into the oil phase and the extraction of light to medium hydrocarbon components from the oil into the CO2 phase. The same mechanism led to the recovery of the bypassed oil trapped in dead-end pores. This unique mechanism produced the majority of the bypassed oil after CO2 breakthrough and significantly increased the oil recovery. In our three-phase flow water-wet system, CO2 flow displaced the water through a multiple displacement mechanism which is unique to three-phase flow. CO2 displaced the oil in oil-filled pores thorough bulk flow, and the spreading oil layers were gradually produced by layer flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Seyyedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyyedi, M., Sohrabi, M. Oil Reservoir on a Chip: Pore-Scale Study of Multiphase Flow During Near-Miscible CO2 EOR and Storage. Transp Porous Med 134, 331–349 (2020). https://doi.org/10.1007/s11242-020-01448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01448-3

Keywords

Navigation