Skip to main content
Log in

Instability of natural convection in a laterally heated cube with perfectly conducting horizontal boundaries

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Oscillatory instability of buoyancy convection in a laterally heated cube with perfectly thermally conducting horizontal boundaries is studied. The effect of the spanwise boundaries on the oscillatory instability onset is examined. The problem is treated by Krylov-subspace-iteration-based Newton and Arnoldi methods. The Krylov basis vectors are calculated by a novel approach that involves the SIMPLE iteration and a projection onto a space of functions satisfying all linearized and homogeneous boundary conditions. The finite volume grid is gradually refined from \(100^{3}\) to \(256^{3}\) finite volumes. A self-sustaining oscillatory process responsible for the instability onset is revealed, visualized and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. De Vahl Davis, G.: Natural convection of air in a square cavity: a benchmark solution. Int. J. Numer. Methods Fluids 3, 249–264 (1982)

    Article  Google Scholar 

  2. Lappa, M.: Thermal Convection: Patterns, Evolution and Stability. Wiley, Singapore (2009)

    Book  Google Scholar 

  3. Tric, E., Labrosse, G., Betrouni, M.: A first inclusion into the 3D structure of natural convection of air in a differentially heated cavity, from accurate numerical solutions. Int. J. Heat Mass Transf. 43, 4043–4056 (1999)

    Article  Google Scholar 

  4. Bennet, B.A.V., Hsueh, J.: Natural convection in a cubic cavity: implicit numerical solution of two benchmark problems. Numer. Heat Transf. Part A 50, 99–123 (2006)

    Article  Google Scholar 

  5. Pepper, D.W., Hollands, K.G.T.: Summary of benchmark numerical studies for 3-D natural convection in an air-filled enclosure. Numer. Heat Transf. Part A 42, 1–11 (2002)

    Article  Google Scholar 

  6. Peng, Y., Shu, C., Chew, Y.T.: A 3D incompressible thermal Lattice Boltzmann Model and its application to simulate natural convection in a cubic cavity. J. Comput. Phys. 193, 260–274 (2003)

    Article  Google Scholar 

  7. Wakashima, S., Saitoh, T.S.: Benchmark solutions for natural convection in a cubic cavity using the high-order time-space method. Int. J Heat. Mass Transf. 47, 853–864 (2004)

    Article  Google Scholar 

  8. Feldman, Y., Gelfgat, A.Y.: On pressure-velocity coupled time-integration of incompressible Navier-Stokes equations using direct inversion of Stokes operator or accelerated multigrid technique. Comput. Struct. 87, 710–720 (2009)

    Article  Google Scholar 

  9. Dijkstra, H.A., Wubs, F.W., Cliffe, K.A., Doedel, E., Dragomirescu, I.F., Eckhardt, B., Gelfgat, A.Y., Hazel, A.L., Lucarini, V., Salinger, A.G., Phipps, E.T., Sanchez-Umbria, J., Schuttelaars, H., Tuckerman, L.S., Thiele, U.: Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15, 1–45 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gelfgat, A.Y.: Stability of convective flows in cavities: solution of benchmark problems by a low-order finite volume method. Int. J. Numer. Methods Fluids 53, 485–506 (2007)

    Article  Google Scholar 

  11. Sagietti, C., Schlatter, P., Monokrousos, A., Henningson, D.S.: Adjoint optimization of natural convection problems: differentially heated cavity. Theor. Comput. Fluid Dyn. 31, 537–553 (2017)

    Article  Google Scholar 

  12. Gelfgat, A.Y. (ed.): Computational Methods for Bifurcations and Instabilities in Fluid Dynamics. Springer, Berlin (2018)

    Google Scholar 

  13. Henkes, R.A.W.M., Hoogendoorn, C.J.: On the stability of the natural convection flow in a square cavity heated from the side. Appl. Sci. Res. 47, 195–220 (1990)

    Article  Google Scholar 

  14. Janssen, R.J.A., Henkes, R.A.W.M., Hoogendoorn, C.J.: Transition to time-periodicity of a natural convection flow in a 3D differentially heated cavity. Int. J. Heat Mass Transf. 36, 2927–2940 (1993)

    Article  Google Scholar 

  15. Janssen, R.J.A., Henkes, R.A.W.M.: The first instability mechanism in differentially heated cavities with conducting horizontal walls. J. Heat Transf. 117, 626–633 (1995)

    Article  Google Scholar 

  16. Gelfgat, A.Y.: Time-dependent modelling of oscillatory instability of three-dimensional natural convection of air in a laterally heated cubic box. Theor. Comput. Fluid Dyn. 31, 447–469 (2017)

    Article  Google Scholar 

  17. Leong, W.H., Hollands, K.G.T., Brunger, A.P.: On a physically-realizable benchmark problem in internal natural convection. Int. J. Heat Mass Transf. 41, 3817–3828 (1998)

    Article  Google Scholar 

  18. Leong, W.H., Hollands, K.G.T., Brunger, A.P.: Experimental Nusselt numbers for a cubical-cavity benchmark problem in natural convection. Int. J. Heat Mass Transf. 42, 1919–1989 (1999)

    Article  Google Scholar 

  19. Jones, D.N., Briggs, D.G.: Periodic two-dimensional cavity flow: effect of linear horizontal thermal boundary condition. J. Heat Transf. 111, 86–91 (1989)

    Article  Google Scholar 

  20. Henkes, R.A.W.M., Le Quéré, P.: Three-dimensional transition of natural convection flows. J. Fluid Mech. 319, 281–303 (1996)

    Article  Google Scholar 

  21. Xin, S., Le Quéré, P.: Linear stability analyses of natural convection flows in a differentially heated square cavity with conducting horizontal walls. Phys. Fluids 13, 2529–2542 (2001)

    Article  Google Scholar 

  22. De Gassowski, G., Xin, S., Daube, O., Fraigneau, Y.: Bifurcations and multiple solutions in an air-filled differentially heated cubic cavity, In: Proceedings of International Heat Transfer Conference 13, Begel House Inc. (2006). https://doi.org/10.1615/IHTC13

  23. Fusegi, T., Hyun, J.M., Kuwahara, K.: Three-dimensional numerical simulation of periodic natural convection in a differentially heated cubical enclosure. Appl. Sci. Res. 49, 271–282 (1992)

    Article  Google Scholar 

  24. Vitoshkin, H., Gelfgat, A.Y.: On direct inverse of Stokes, Helmholtz and Laplacian operators in view of time-stepper-based Newton and Arnoldi solvers in incompressible CFD. Commun. Comput. Phys. 14, 1103–1119 (2013)

    Article  MathSciNet  Google Scholar 

  25. Gelfgat, A.Y.: Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections. Comput. Fluids 97, 143–155 (2014)

    Article  MathSciNet  Google Scholar 

  26. Gelfgat, A.Y.: Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions. Theor. Comput. Fluid Dyn. 30, 339–348 (2016)

    Article  Google Scholar 

  27. van der Vorst, H.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  28. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor & Francis, New York (1980)

    MATH  Google Scholar 

  29. Gelfgat, A.Y.: Linear instability of the lid-driven flow in a cubic cavity. Theor. Comput. Fluid Dyn. 33, 59–82 (2019)

    Article  MathSciNet  Google Scholar 

  30. Gebhart, B., Jaluria, Y., Mahajan, R.L., Sammakia, B.: Buoyancy-Induced Flows and Transport. Hemisphere Publishing Corp, New York (1988)

    MATH  Google Scholar 

  31. Gill, A.E.: The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech. 26, 515–536 (1966)

    Article  Google Scholar 

  32. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MathSciNet  Google Scholar 

  33. Scott, J.A.: An Arnoldi code for computing selected eigenvalues of sparse real unsymmetric matrices. ACM Trans. Math. Softw. 21, 432–475 (1995)

    Article  MathSciNet  Google Scholar 

  34. Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110, 82–102 (1994)

    Article  MathSciNet  Google Scholar 

  35. Gelfgat, A.Y.: Krylov-subspace-based steady state and stability solvers for incompressible flows: replacing time steppers and generation of initial guess. In: Gelfgat, A. (ed.) Computational Methods for Bifurcations and Instabilities in Fluid Dynamics. Springer, Berlin (2018)

    Google Scholar 

  36. Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial differential equations by tensor product methods. Numer. Math. 6, 185–199 (1964)

    Article  MathSciNet  Google Scholar 

  37. Gelfgat, A.Y., Bar-Yoseph, P.Z., Yarin, A.L.: On oscillatory instability of convective flows at low Prandtl number. J. Fluids Eng. 119, 823–830 (1997)

    Article  Google Scholar 

  38. Gelfgat, A.Y.: Stability and slightly supercritical oscillatory regimes of natural convection in a 8:1 cavity: solution of benchmark problem by a global Galerkin method. Int. J. Numer. Methods Fluids 44, 135–146 (2004)

    Article  MathSciNet  Google Scholar 

  39. Winters, K.H.: Hopf bifurcation in the double-glazing problem with conducting boundaries. J. Heat Transf. 109, 894–989 (1987)

    Article  Google Scholar 

  40. Gelfgat, A.Y., Tanasawa, I.: Numerical analysis of oscillatory instability of buoyancy convection with the Galerkin spectral method. Numer. Heat Transf. Part A Appl. 25, 627–648 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Israel Science Foundation (ISF) grant No 415/18 and was enabled in part by support provided by WestGrid (www.westgrid.ca) and Compute Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yu. Gelfgat.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 3882 KB)

Supplementary material 2 (avi 4542 KB)

Supplementary material 3 (avi 4454 KB)

Supplementary material 4 (avi 2139 KB)

Supplementary material 5 (avi 2144 KB)

Supplementary material 6 (avi 3658 KB)

Supplementary material 7 (avi 2685 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelfgat, A.Y. Instability of natural convection in a laterally heated cube with perfectly conducting horizontal boundaries. Theor. Comput. Fluid Dyn. 34, 693–711 (2020). https://doi.org/10.1007/s00162-020-00541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00541-z

Keywords

Navigation