Skip to main content
Log in

Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study Ramsey’s theorem for pairs and two colours in the context of the theory of \(\alpha \)-large sets introduced by Ketonen and Solovay. We prove that any 2-colouring of pairs from an \(\omega ^{300n}\)-large set admits an \(\omega ^n\)-large homogeneous set. We explain how a formalized version of this bound gives a more direct proof, and a strengthening, of the recent result of Patey and Yokoyama (Adv Math 330: 1034–1070, 2018) stating that Ramsey’s theorem for pairs and two colours is \(\forall \Sigma ^0_2\)-conservative over the axiomatic theory \({\textsf {RCA}}_{\textsf {0}}\) (recursive comprehension).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bigorajska, T., Kotlarski, H.: A partition theorem for \(\alpha \)-large sets. Fund. Math. 160(1), 27–37 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bigorajska, T., Kotlarski, H.: Some combinatorics involving \(\xi \)-large sets. Fund. Math. 175(2), 119–125 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bigorajska, T., Kotlarski, H.: Partitioning \(\alpha \)-large sets: some lower bounds. Trans. Am. Math. Soc. 358(11), 4981–5001 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bovykin, A., Weiermann, A.: The strength of infinitary Ramseyan principles can be accessed by their densities. Ann. Pure Appl. Logic 168(9), 1700–1709 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cholak, P.A., Jockusch, C.G., Slaman, T.A.: On the strength of Ramsey’s theorem for pairs. J. Symb. Log 66(1), 1–15 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chong, C.T., Slaman, T.A., Yang, Y.: The metamathematics of Stable Ramsey’s theorem for pairs. J. Am. Math. Soc. 27(3), 863–892 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chong, C.T., Slaman, T.A., Yang, Y.: The inductive strength of Ramsey’s theorem for pairs. Adv. Math. 308, 121–141 (2017)

    Article  MathSciNet  Google Scholar 

  8. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Springer, Berlin, XIV+460 pages (1993)

  9. Hirschfeldt, D.R., Shore, R.A.: Combinatorial principles weaker than Ramsey’s theorem for pairs. J. Symb. Log. 72(1), 171–206 (2007)

    Article  MathSciNet  Google Scholar 

  10. Kaye, R., Wong, T.L.: On interpretations of arithmetic and set theory. Notre Dame J. Formal Logic 48(4), 497–510 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ketonen, J., Solovay, R.: Rapidly growing Ramsey functions. Ann. Math. (2) 113(2), 267–314 (1981)

    Article  MathSciNet  Google Scholar 

  12. Kołodziejczyk, L.A., Wong, T.L., Yokoyama, K.: Ramsey’s theorem for pairs, collection, and proof size. Preprint, available at arXiv:2005.06854

  13. Kotlarski, H., Piekart, B., Weiermann, A.: More on lower bounds for partitioning \(\alpha \)-large sets. Ann. Pure Appl. Logic 147(3), 113–126 (2007)

    Article  MathSciNet  Google Scholar 

  14. Lerman, M., Solomon, R., Towsner, H.: Separating principles below Ramsey’s theorem for pairs. J. Math. Log. 13(02), 1350007 (2013)

    Article  MathSciNet  Google Scholar 

  15. Montalbán, A.: Open questions in reverse mathematics. Bull. Symb. Log. 17(3), 431–454 (2011)

    Article  MathSciNet  Google Scholar 

  16. Paris, J., Harrington, L.: A mathematical incompleteness in Peano arithmetic. In Barwise, J. (ed.) Handbook of Mathematical Logic, volume 90 of Stud. Logic Found. Math., pp. 1133–1142. North-Holland, Amsterdam (1977)

  17. Patey, L., Yokoyama, K.: The proof-theoretic strength of Ramsey’s theorem for pairs and two colors. Adv. Math. 330, 1034–1070 (2018)

    Article  MathSciNet  Google Scholar 

  18. Pelupessy, F.: On \(\alpha \)-largeness and the Paris-Harrington principle in RCA\(_{0}\) and RCA\(_{0}^{*}\). Available at arXiv:1611.08988

  19. Seetapun, D., Slaman, T.A.: On the strength of Ramsey’s theorem. Notre Dame J. Formal Logic 36(4), 570–582 (1995)

    Article  MathSciNet  Google Scholar 

  20. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, 1999. XIV + 445 pages; Second Edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, 2009, XVI+ 444 pages

  21. De Smet, M., Weiermann, A.: Partitioning \(\alpha \)-large sets for \(\alpha <\varepsilon _{\omega }\). Available at arXiv:1001.2437

  22. Weiermann, A.: A classification of rapidly growing Ramsey functions. Proc. Am. Math. Soc. 132(2), 553–561 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Yokoyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the first author is partially supported by Grant No. 2017/27/B/ST1/01951 of the National Science Centre, Poland.

The work of the second author is partially supported by JSPS KAKENHI (Grant Nos. 16K17640 and 15H03634) and JSPS Core-to-Core Program (A. Advanced Research Networks), and JAIST Research Grant 2018 (Houga).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kołodziejczyk, L.A., Yokoyama, K. Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs. Sel. Math. New Ser. 26, 56 (2020). https://doi.org/10.1007/s00029-020-00577-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00577-3

Keywords

Mathematics Subject Classification

Navigation