Skip to main content
Log in

Transformation behavior of precipitates during artificial aging at 170 °C in Al–Mg–Si–Cu alloys with and without Zn addition

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The transformation behavior of precipitates in Al–Mg–Si–Cu alloys with and without Zn addition during artificial aging at 170 °C was investigated in this study. For Al–Mg–Si–Cu alloys with and without Zn addition, two types of precipitates, needle-like β″ and lath-like L, are formed with the aging time increasing from 8 to 34 h. The needle-like β″ precipitate exhibits a Mg-to-Si atomic ratio of 1.31 which is in agreement with the theoretical ratio of 1.25 for β″ (Mg5Al2Si4). In addition, the β″ precipitate is supposed to contain Al and Cu. With further partitioning of Mg, Si and Cu and release of Al, the needle-like β″ precipitate can transform to lath-like L phase. The L phase has significantly higher concentrations of Mg, Si and Cu and lower concentration of Al, with a higher Mg-to-Si atomic ratio (1.41) deviated from theoretical ratio of β″. However, the major of Zn has a random distribution in Al matrix and exhibits no significant partitioning into precipitates. Zn remained in matrix can enhance the transformation of β″ precipitates to L precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Y, Wang QP, Gao GJ, Li JD, Wang ZD. Texture evolution and mechanical properties of Al–Mg–Si alloys at different intermediate annealing temperatures. Rare Met. 2019;38(10):937.

    Article  CAS  Google Scholar 

  2. Pogatscher S, Antrekowitsch H, Leitner H, Ebner T, Uggowitzer PJ. Mechanism controlling the artificial aging of Al–Mg–Si alloys. Acta Mater. 2011;59(9):3352.

    Article  CAS  Google Scholar 

  3. Tsao CS, Chen CY, Jeng US, Kuo TY. Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys. Acta Mater. 2006;54(17):4621.

    Article  CAS  Google Scholar 

  4. Huang HL, Jia ZH, Xing Y, Liu Q. Microstructure of Al-Si-Mg alloy with Zr/Hf additions during solidification and solution treatment. Rare Met. 2019;38(11):1033.

    Article  CAS  Google Scholar 

  5. Edwardsa GA, Stillerb K, Dunlopa GL, Couperc MJ. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998;46(11):3893.

    Article  Google Scholar 

  6. Miao WF, Laughlin DE. Effect of Cu content and preaging on precipitation characteristics in aluminum alloys 6022. Metall Mater Trans A. 2000;31(2):361.

    Article  Google Scholar 

  7. Andersen SJ, Zandbergen HW, Jansen J, Træholt C, Tundal U, Reiso O. The crystal structure of β″ phase in Al-Mg-Si alloys. Acta Mater. 2007;46(2):3283.

    Google Scholar 

  8. Hasting HS, Frøseth AG, Andersen SJ, Vissers R, Walmsley JC, Marioara CD, Danoix F, Lefebvre W, Holmestad R. Composition of β″ precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations. J Appl Phys. 2009;106(12):691.

    Article  Google Scholar 

  9. Vissers R, Huis MA, Jansen J, Zanbergen HW, Marioara CD, Andersen SJ. The crystal structure of β′ phase in Al-Mg-Si alloys. Acta Mater. 2007;55(11):3815.

    Article  CAS  Google Scholar 

  10. Huis MA, Chen JH, Zandbergen HW, Sluiter MHF. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution. Acta Mater. 2006;54(11):2945.

    Article  Google Scholar 

  11. Torsætera M, Lefebvre W, Marioara CD, Andersen SJ, Walmsley JC, Holmestad R. Study of intergrown L and Q′ precipitates in Al-Mg-Si-Cu alloys. Scr Mater. 2011;64(9):817.

    Article  Google Scholar 

  12. Ding LP, Hu H, Jia ZH, Weng YY, Wu XZ, Liu Q. The disordered structure of Q′ and C phases in Al-Mg-Si-Cu alloy. Scr Mater. 2016;118:55.

    Article  CAS  Google Scholar 

  13. Cai YH, Wang C, Zhang JS. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy. Int J Minerals Metall Mater. 2013;20(7):659.

    Article  CAS  Google Scholar 

  14. Yan LZ, Zhang YA, Li XW, Li ZH, Wang F. Effect of Zn addition on microstructure and mechanical properties of an Al-Mg-Si alloy. Progr. Nat. Sci. Mater. Int. 2014;24(2):97.

    Article  CAS  Google Scholar 

  15. Guo MX, Sha G, Cao LY, Liu WQ, Zhang JS, Zhuang LZ. Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition. Mater Chem Phys. 2015;162:15.

    Article  CAS  Google Scholar 

  16. Guo MX, Zhang Y, Zhang XK, Zhang JS, Zhuang LZ. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents. Mater Sci Eng A. 2016;669:20.

    Article  CAS  Google Scholar 

  17. Saito T, Wenner S, Osmundsen E, Marioara CD, Andersen SJ. The effect of Zn on precipitation in Al–Mg–Si alloys. Phil Mag. 2014;94(21):2410.

    Article  CAS  Google Scholar 

  18. Hono K. Atom probe microanalysis and nanoscale microstructures in metallic materials. Acta Mater. 1999;47(11):3127.

    Article  CAS  Google Scholar 

  19. Stephenson LT, Moody MP, Liddicoat PV, Ringer SP. New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal. 2007;13(6):448.

    Article  CAS  Google Scholar 

  20. Yang WC, Wang MP, Zhang RR, Zhang Q, Sheng XF. The diffraction patterns from β″ precipitates in 12 orientations in Al-Mg-Si alloy. Scr Mater. 2010;62(9):705.

    Article  CAS  Google Scholar 

  21. Marioara CD, Andersen SJ, Stene TN, Hasting H, Walmsley J, Vanhelvoort ATJ, Holmestad R. The effect of Cu on precipitation in Al-Mg-Si alloy. Philos Mag. 2007;87(23):3385.

    Article  CAS  Google Scholar 

  22. Marquis EA, Geiser BP, Prosa TJ, Larson DJ. Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc. 2015;241(3):225.

    Article  Google Scholar 

  23. Marceau RKW, Vaucorbeil A, Sha G, Ringer SP, Poole WJ. Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling. Acta Mater. 2016;61(19):7285.

    Article  Google Scholar 

  24. Ehlers FJH. Ab initio interface configuration determination for β″ in Al-Mg-Si: beyond the constrain of a preserved precipitates stoichiometry. Comput Mater Sci. 2014;81:617.

    Article  CAS  Google Scholar 

  25. Ehlers FJH, Dumoulin S, Holmestad R. 3D modelling of β″ in Al-Mg-Si: towards an atomistic level ab initio based examination of a full precipitate enclosed in a host lattice. Comput Mater Sci. 2014;91:200.

    Article  CAS  Google Scholar 

  26. Ninive PH, Strandlie A, Gulbrandsen-Dahl S, Lefebvre W, Marioara CD, Andersen SJ, Friis J, Holmestad R, Løvvik OM. Detail atomistic insight into the β″ phase in Al-Mg-Si alloys. Acta Mater. 2014;69:126.

    Article  CAS  Google Scholar 

  27. Buchanan K, Colas K, Ribis J, Lopez A, Garnier J. Analysis of the metastable precipitates in peak-hardness aged Al-Mg-Si(-Cu) alloys with differing Si contents. Acta Mater. 2017;132:209.

    Article  CAS  Google Scholar 

  28. Li K, Beche A, Song M, Sha G, Lu XX, Zhang K, Du Y, Ringer SP, Schryvers D. Atomistic structure of Cu-containing β″ precipitates in an Al-Mg-Si-Cu alloy. Scr Mater. 2014;75:86.

    Article  Google Scholar 

  29. Ding LP, Jia ZH, Nie JF, Weng YY, Cao LF, Chen HW, Wu XZ, Liu Q. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater. 2018;145:437.

    Article  CAS  Google Scholar 

  30. King HW. Quantitative size-factors for metallic solid solutions. J Mater Sci. 1966;1(1):79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300802)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Li, ZH., Yan, LZ. et al. Transformation behavior of precipitates during artificial aging at 170 °C in Al–Mg–Si–Cu alloys with and without Zn addition. Rare Met. 40, 1907–1914 (2021). https://doi.org/10.1007/s12598-020-01427-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01427-z

Keywords

Navigation