Skip to main content
Log in

Periodic Solutions for the Degenerate Lotka–Volterra Competition System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we consider periodic solutions for the degenerate Lotka–Volterra competition system. We use the iteration method and energy method to prove the existence of periodic solutions. Furthermore, we give some numerical simulations and explicit solutions to verify our theoretical results. As far as we know, there are no results about the periodic solutions for degenerate Lotka–Volterra competition system before the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahmad, S., Lazer, A.C.: Asymptotic behaviour of solutions of periodic competition diffusion system. Nonlinear Anal. TMA 13, 263–284 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Bögelein, V., Scheven, C.: Higher integrability in parabolic obstacle problems. Forum Math. 24(5), 931–972 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Cosner, C., Lazer, A.C.: Stable coexistence states in the Volterra–Lotka competition model with diffusion. SIAM J. Appl. Math. 44(6), 1112–1132 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Delgado, M., Suárez, A.: On the existence of dead cores for degenerate Lotka–Volterra models. Proc. R. Soc. Edinb. Sect. A. 130, 743–766 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Delgado, M., Suárez, A.: On the structure of the positive solutions of the logistic equation with nonlinear diffusion. J. Math. Anal. Appl. 268(1), 200–216 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Delgado, M., Suárez, A.: Stability and uniqueness for cooperative degenerate Lotka–Volterra model. Nonlinear Anal. TMA 49(6), 757–778 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Ebmeyer, C., Liu, W.: Finite element approximation of the fast diffusion and the porous medium equations. SIAM J. Numer. Anal. 46, 2393–2410 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Emmrich, E., Siska, D.: Full discretization of the porous medium/fast diffusion equation based on its very weak formulation. Commun. Math. Sci. 10, 1055–1080 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Huang, H., Huang, R.: Asymptotic behavior of solutions for the Chafee-infante equation. Acta Math. Sci. 40, 425–441 (2020)

    MathSciNet  Google Scholar 

  10. Huang, H., Huang, R., Yin, J.: The supplementation of the theory of periodic solutions for a class of nonlinear diffusion equations. Appl. Math. Comput. 346, 753–766 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)

    MATH  Google Scholar 

  12. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  13. Murray, J.D.: Mathematical Biology, 3rd edn. Volume I (An Introduction) and Volume II (Spatial Models and Biomedical Applications). Springer, New York (2002)

  14. Ngo, C., Huang, W.: A study on moving mesh finite element solution of the porous medium equation. J. Comput. Phys. 331, 357–380 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Ni, W.M.: The Mathematics of Diffusion. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

    MATH  Google Scholar 

  16. Nica, M.: Eigenvalues and eigenfunctions of the Laplacian. Waterloo Math. Rev. 1(2), 23–34 (2011)

    Google Scholar 

  17. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives. Springer, New York (2002)

    MATH  Google Scholar 

  18. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  19. Pao, C.V.: Global asymptotic stability of Lotka–Volterra competition systems with diffusion and time delays. Nonlinear Anal. TMA 5, 91–104 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Pao, C.V.: A Lotka–Volterra cooperating reaction–diffusion system with degenerate density-dependent diffusion. Nonlinear Anal. 95, 460–467 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Pao, C.V.: Dynamics of Lotka–Volterra competition reaction–diffusion systems with degenerate diffusion. J. Math. Anal. Appl. 421, 1721–1742 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  23. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 53, 135–165 (1991)

    MathSciNet  Google Scholar 

  24. Sun, J., Zhang, D., Wu, B.: A two-species cooperative Lotka–Volterra system of degenerate parabolic equations. Abstr. Appl. Anal. (2011). https://doi.org/10.1155/2011/714248

    Article  MathSciNet  MATH  Google Scholar 

  25. Tineo, A., Rivero, J.: Permanence and asymptotic stability for competitive and Lotka–Volterra systems with diffusion. Nonlinear Anal. Real World Appl. 4, 615–624 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Volterra, V.: Variazionie fluttuazioni del numero d’individui in specie animali conviventi. Mem. della R. Accademia dei Lincei Ser. VI II, 31–113 (1926)

    MATH  Google Scholar 

  27. Wang, Y.M.: Global asymptotic stability of Lotka–Volterra competition, reaction-diffusion systems with time delays. Math. Comput. Model. 53, 337–346 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Yin, J.: Periodic solutions of a class of degenerate parabolic system with delays. J. Math. Anal. Appl. 380, 57–68 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Wong, J.C.F.: The analysis of a finite element method for the three-species Lotka–Volterra competition-diffusion with Dirichlet boundary conditions. J. Comput. Appl. Math. 223, 421–437 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions, which made some significant changes in this paper. The research of H. Huang was supported by Guangdong Basic and Applied Basic Research Foundation, No. 2019A1515110074. The research of R. Huang was supported in part by NSFC Grant Nos. 11671155, 11771155 and 11971179, Guangdong Basic and Applied Basic Research Foundation Nos. 2020A1515010338, 2020B1515310005 and 2020B1515310013. The research of L. Wang was supported in part by NSFC Grant Nos. 11771156 and 11371153, NSF of CQ Grant No. cstc2019jcyj-msxmX0381, Chongqing Municipal Key Laboratory of Institutions of Higher Education Grant No. [2017]3 and the research project of Chongqing Three Gorges University Grant No. 17ZP13. The research of J. Yin was supported by NSFC Grant No. 11771156, NSF of Guangdong Grant No. 2020B1515310013, NSF of Guangzhou Grant No. 201804010391 and Natural Science Foundation of Guangdong Province (Grant No. 2017A030313003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Huang, R., Wang, L. et al. Periodic Solutions for the Degenerate Lotka–Volterra Competition System. Qual. Theory Dyn. Syst. 19, 73 (2020). https://doi.org/10.1007/s12346-020-00409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00409-x

Keywords

Mathematics Subject Classification

Navigation