Skip to main content

Advertisement

Log in

Effect of Dermaseptin S4 on C. albicans Growth and EAP1 and HWP1 Gene Expression

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Increasing resistance and changes in the spectrum of Candida infections have generated considerable interest in the development of new antifungal molecules. The use of antimicrobial peptides (AMPs) appears to be a promising approach. Frog skin AMPs (such as dermaseptins) have shown antimicrobial activity against several pathogens. In this study, we aimed to test the antimicrobial efficacy of dermaseptin S4 (DS4) against C. albicans. We determined the minimal inhibitory concentration (MIC) of DS4, and investigated the effects of the DS4 at low concentrations on human primary gingival fibroblasts. Additionally, we evaluated the effect of DS4 on C. albicans growth, form changes, and biofilm formation, as well as the expression of certain virulent genes. Our data show that DS4 completely inhibits C. albicans growth at a concentration of 32 μg/mL referring to the MIC of DS4. It should be noted that even with low concentrations (below 16 μg/mL), DS4 still have significant growth reduction of C. albicans, but were not toxic to human gingival fibroblasts. DS4 inhibited the transition from yeast to hyphae, and decreased the biofilm formation by reducing the biofilm mass weight. Surface morphological changes in the yeast cell membrane were observed following exposure to DS4. The gene expression analyses revealed that DS4 significantly decreased the expression of EAP1 and HWP1 genes. Overall results suggest the potential use of DS4 as an antifungal therapy to prevent C. albicans pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Enoch DA, Yang H, Aliyu SH, Micallef C (2017) The changing epidemiology of invasive fungal infections. Methods Mol Biol 1508:17–65. https://doi.org/10.1007/978-1-4939-6515-1_2

    Article  CAS  PubMed  Google Scholar 

  2. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN (2019) Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect Dis 6(Suppl 1):S79–S94. https://doi.org/10.1093/ofid/ofy358

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373(15):1445–1456. https://doi.org/10.1056/NEJMra1315399

    Article  CAS  PubMed  Google Scholar 

  4. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92. https://doi.org/10.1146/annurev-micro-091014-104330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soll DR, Daniels KJ (2016) Plasticity of Candida albicans biofilms. Microbiol Mol Biol Rev 80(3):565–595. https://doi.org/10.1128/MMBR.00068-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74 (4):ftw018. doi:https://doi.org/10.1093/femspd/ftw018

  7. Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K (2018) Candida albicans - biology, molecular characterization, pathogenicity, and advances in diagnosis and control - an update. Microb Pathog 117:128–138. https://doi.org/10.1016/j.micpath.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  8. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128. https://doi.org/10.4161/viru.22913

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72(3):495–544. https://doi.org/10.1128/MMBR.00032-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orsi CF, Borghi E, Colombari B, Neglia RG, Quaglino D, Ardizzoni A, Morace G, Blasi E (2014) Impact of Candida albicans hyphal wall protein 1 (HWP1) genotype on biofilm production and fungal susceptibility to microglial cells. Microb Pathog 69-70:20–27. https://doi.org/10.1016/j.micpath.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  11. Li F, Palecek SP (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2(6):1266–1273. https://doi.org/10.1128/ec.2.6.1266-1273.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, Andes D, Palecek SP (2007) Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 6(6):931–939. https://doi.org/10.1128/EC.00049-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5(10):1604–1610. https://doi.org/10.1128/EC.00194-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robbins N, Caplan T, Cowen LE (2017) Molecular evolution of antifungal drug resistance. Annu Rev Microbiol 71:753–775. https://doi.org/10.1146/annurev-micro-030117-020345

    Article  CAS  PubMed  Google Scholar 

  15. Nett JE, Andes DR (2016) Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin N Am 30(1):51–83. https://doi.org/10.1016/j.idc.2015.10.012

    Article  Google Scholar 

  16. Lin GY, Chen HF, Xue YP, Yeh YC, Chen CL, Liu MS, Cheng WC, Lan CY (2016) The antimicrobial peptides P-113Du and P-113Tri function against Candida albicans. Antimicrob Agents Chemother 60(10):6369–6373. https://doi.org/10.1128/AAC.00699-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Theberge S, Semlali A, Alamri A, Leung KP, Rouabhia M (2013) C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W. BMC Microbiol 13:246. https://doi.org/10.1186/1471-2180-13-246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ladram A, Nicolas P (2016) Antimicrobial peptides from frog skin: biodiversity and therapeutic promises. Front Biosci (Landmark Ed) 21:1341–1371. https://doi.org/10.2741/4461

    Article  CAS  Google Scholar 

  19. Nicolas P, El Amri C (2009) The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochim Biophys Acta 1788(8):1537–1550. https://doi.org/10.1016/j.bbamem.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  20. Belmadani A, Semlali A, Rouabhia M (2018) Dermaseptin-S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. J Appl Microbiol 125(1):72–83. https://doi.org/10.1111/jam.13745

    Article  CAS  PubMed  Google Scholar 

  21. Mor A, Nicolas P (1994) Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem 219(1–2):145–154. https://doi.org/10.1111/j.1432-1033.1994.tb19924.x

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez-Tudela JL, Arendrup MC, Barchiesi F, Bille J, Chryssanthou E, Cuenca-Estrella M, Dannaoui E, Denning DW, Donnelly JP, Dromer F, Fegeler W, Lass-Flörl C, Moore C, Richardson M, Sandven P, Velegraki A, Verweij P, Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing (2008) EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect 14(4):398–405. https://doi.org/10.1111/j.1469-0691.2007.01935.x

    Article  CAS  Google Scholar 

  23. Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope W, AFST EUCAST (2012) EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect 18(7):E246–E247. https://doi.org/10.1111/j.1469-0691.2012.03880.x

    Article  CAS  PubMed  Google Scholar 

  24. Alanazi H, Park HJ, Chakir J, Semlali A, Rouabhia M (2018) Comparative study of the effects of cigarette smoke and electronic cigarettes on human gingival fibroblast proliferation, migration and apoptosis. Food Chem Toxicol 118:390–398. https://doi.org/10.1016/j.fct.2018.05.049

    Article  CAS  PubMed  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benzaid C, Belmadani A, Djeribi R, Rouabhia M (2019) The effects of Mentha x piperita essential oil on C. albicans growth, transition, biofilm formation, and the expression of secreted aspartyl proteinases genes. Antibiotics (Basel) 8(1). https://doi.org/10.3390/antibiotics8010010

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  28. Lum KY, Tay ST, Le CF, Lee VS, Sabri NH, Velayuthan RD, Hassan H, Sekaran SD (2015) Activity of novel synthetic peptides against Candida albicans. Sci Rep 5:9657. https://doi.org/10.1038/srep09657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou X, Shi D, Zhong R, Ye Z, Ma C, Zhou M, Xi X, Wang L, Chen T, Kwok HF (2019) Bioevaluation of ranatuerin-2Pb from the frog skin secretion of Rana pipiens and its truncated analogues. Biomolecules 9(6). https://doi.org/10.3390/biom9060249

  30. Conlon JM, Galadari S, Raza H, Condamine E (2008) Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem Biol Drug Des 72(1):58–64. https://doi.org/10.1111/j.1747-0285.2008.00671.x

    Article  CAS  PubMed  Google Scholar 

  31. Tan Y, Chen X, Ma C, Xi X, Wang L, Zhou M, Burrows JF, Kwok HF, Chen T (2018) Biological activities of cationicity-enhanced and hydrophobicity-optimized analogues of an antimicrobial peptide, dermaseptin-PS3, from the skin secretion of Phyllomedusa sauvagii. Toxins (Basel) 10(8). https://doi.org/10.3390/toxins10080320

  32. Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11(7):3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Park HJ, Salem M, Semlali A, Leung KP, Rouabhia M (2017) Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro. Peptides 93:33–43. https://doi.org/10.1016/j.peptides.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  34. Porat Y, Marynka K, Tam A, Steinberg D, Mor A (2006) Acyl-substituted dermaseptin S4 derivatives with improved bactericidal properties, including on oral microflora. Antimicrob Agents Chemother 50(12):4153–4160. https://doi.org/10.1128/AAC.00750-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lima PG, Souza PFN, Freitas CDT, Oliveira JTA, Dias LP, Neto JXS, Vasconcelos IM, Lopes JLS, Sousa DOB (2020) Anticandidal activity of synthetic peptides: mechanism of action revealed by scanning electron and fluorescence microscopies and synergism effect with nystatin. J Pept Sci:e3249. doi:https://doi.org/10.1002/psc.3249

  36. Harris M, Mora-Montes HM, Gow NAR, Coote PJ (2009) Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface. Microbiology 155(Pt 4):1058–1070. https://doi.org/10.1099/mic.0.026120-0

    Article  CAS  PubMed  Google Scholar 

  37. Luca V, Olivi M, Di Grazia A, Palleschi C, Uccelletti D, Mangoni ML (2014) Anti-Candida activity of 1-18 fragment of the frog skin peptide esculentin-1b: in vitro and in vivo studies in a Caenorhabditis elegans infection model. Cell Mol Life Sci 71(13):2535–2546. https://doi.org/10.1007/s00018-013-1500-4

    Article  CAS  PubMed  Google Scholar 

  38. Banerjee M, Uppuluri P, Zhao XR, Carlisle PL, Vipulanandan G, Villar CC, Lopez-Ribot JL, Kadosh D (2013) Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms. Eukaryot Cell 12(2):224–232. https://doi.org/10.1128/EC.00163-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niewerth M, Kunze D, Seibold M, Schaller M, Korting HC, Hube B (2003) Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob Agents Chemother 47(6):1805–1817. https://doi.org/10.1128/aac.47.6.1805-1817.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Chang W, Zhang M, Li X, Jiao Y, Lou H (2015) Diorcinol D exerts fungicidal action against Candida albicans through cytoplasm membrane destruction and ROS accumulation. PLoS One 10(6):e0128693. https://doi.org/10.1371/journal.pone.0128693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. La Rocca P, Shai Y, Sansom MS (1999) Peptide-bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. Biophys Chem 76(2):145–159. https://doi.org/10.1016/s0301-4622(98)00232-4

    Article  PubMed  Google Scholar 

  42. Amiche M, Galanth C (2011) Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr Pharm Biotechnol 12(8):1184–1193. https://doi.org/10.2174/138920111796117319

    Article  CAS  PubMed  Google Scholar 

  43. Beckloff N, Laube D, Castro T, Furgang D, Park S, Perlin D, Clements D, Tang H, Scott RW, Tew GN, Diamond G (2007) Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob Agents Chemother 51(11):4125–4132. https://doi.org/10.1128/AAC.00208-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kadosh D (2019) Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Curr Opin Microbiol 52:27–34. https://doi.org/10.1016/j.mib.2019.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  45. Verma-Gaur J, Traven A (2016) Post-transcriptional gene regulation in the biology and virulence of Candida albicans. Cell Microbiol 18(6):800–806. https://doi.org/10.1111/cmi.12593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharkey LL, McNemar MD, Saporito-Irwin SM, Sypherd PS, Fonzi WA (1999) HWP1 functions in the morphological development of Candida albicans downstream of ZhouEFG1, TUP1, and RBF1. J Bacteriol 181(17):5273–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Amine Belmadani for his help with the extraction of the total RNA, and Dr. Abdelhabib Semlali for explanation about PCR analyses.

Funding

This work was supported by a grant (FO104103) from the “Fonds Émile-Beaulieu”, Laval University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Rouabhia.

Ethics declarations

Ethical Approval

The use of primary human gingival fibroblasts was approved by the Ethic Committee of Université Laval with approval number: 2017-014.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samot, J., Rouabhia, M. Effect of Dermaseptin S4 on C. albicans Growth and EAP1 and HWP1 Gene Expression. Probiotics & Antimicro. Prot. 13, 287–298 (2021). https://doi.org/10.1007/s12602-020-09685-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09685-0

Keywords

Navigation