Skip to main content
Log in

Multiobjective two-level simple recourse programming problems with discrete random variables

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we focus on multiobjective two-level simple recourse programming problems, in which multiple objective functions are involved in each level, shortages and excesses arising from the violation of the constraints with discrete random variables are penalized, and the sum of the objective function and the expectation of the amount of the penalties is minimized. To deal with such problems, a concept of Pareto Stackelberg solutions based on the reference objective levels is introduced. Using the Kuhn–Tucker approach in two-level programming, we formulate as a mixed integer programming problem, and propose an interactive algorithm to obtain a satisfactory solution of the leader from among a Pareto Stackelberg solution set based on the reference objective levels. A numerical example illustrates the proposed algorithm for a multiobjective two-level stochastic programming problem with simple recourses under the hypothetical leader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Numerical Optimizer, NTT DATA Mathematical Systems Inc., https://www.msi.co.jp/nuopt/.

References

  • Abdelaziz FB (2012) Solution approaches for the multiobjective stochastic programming. Eur J Oper Res 216:1–16

    Article  MathSciNet  Google Scholar 

  • Ahmad YA, Haneefa K (2019) Bi-level multi-objective stochastic linear fractional programming with general form of distribution. Stat Optim Inf Comput 7:407–416

    MathSciNet  Google Scholar 

  • Bard JF (1991) Some properties of the bilevel programming problem. J Optim Theory Appl 68:371–378

    Article  MathSciNet  Google Scholar 

  • Bialas WF, Karwan MH (1984) Two-level linear programming. Manag Sci 30:1004–1020

    Article  MathSciNet  Google Scholar 

  • Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, Berlin

    MATH  Google Scholar 

  • Charnes A, Cooper WW (1959) Chance constrained programming. Manag Sci 6:73–79

    Article  MathSciNet  Google Scholar 

  • Danzig GB (1955) Linear programming under uncertainty. Manag Sci 1:197–206

    Article  MathSciNet  Google Scholar 

  • Dempe S (2002) Foundations of bilevel programming. Kluwer Academic Publishers, Berlin

    MATH  Google Scholar 

  • Dempe S, Kalashnikov VV, Perez-Valdes GA, Kalashnykova NI (2011) Natural gas bilevel cash-out problem: convergence of a penalty function method. Eur J Oper Res 215:532–538

    Article  MathSciNet  Google Scholar 

  • Dempe S, Kalashnikov V, Perez-Valdes GA, Kalashnykova N (2015) Bilevel programming problems: theory, algorithms and applications to energy networks. Springer, Berlin

    Book  Google Scholar 

  • Emam OE (2013) Interactive approach to bi-level integer multi-objective fractional programming problem. Appl Math Comput 223:17–24

    MathSciNet  MATH  Google Scholar 

  • Fang S, Guo P, Li M, Zhang L (2013) Bilevel multiobjective programming applied to water resources allocation. Math Probl Eng. Article ID 837919:

  • Fliege J, Vicente LN (2006) Multicriteria approach to bilevel optimization. J Optim Theory Appl 131:209–225

    Article  MathSciNet  Google Scholar 

  • Fortuny-Amat J, McCarl B (1981) A representation and economic interpretation of a two-level programming problem. J Oper Res Soc 32:783–792

    Article  MathSciNet  Google Scholar 

  • Gutjahr WJ, Pichler A (2016) Stochastic multi-objective optimization: a survey on non-scalarizing methods. Ann Oper Res 236:475–499

    Article  MathSciNet  Google Scholar 

  • Jeroslow RG (1985) The polynomial hierarchy and a simple model for competitive analysis. Math Program 32:146–164

    Article  MathSciNet  Google Scholar 

  • Júdice JJ, Faustino AM (1992) A sequential LCP method for bilevel linear programming. Ann Oper Res 34:89–106

    Article  MathSciNet  Google Scholar 

  • Kalashnikov V, Perez-Valdes GA, Kalashnykova NI (2010a) A linearization approach to solve the natural gas cash-out bilevel problem. Ann Oper Res 181:423–442

    Article  MathSciNet  Google Scholar 

  • Kalashnikov V, Perez-Valdes GA, Tomasgard A, Kalashnykova NI (2010b) Natural gas cash-out problem: bilevel stochastic optimization approach. Eur J Oper Res 206:18–33

    Article  MathSciNet  Google Scholar 

  • Kalashnikov V, Dempe S, Perez-Valdes GA, Kalashnykova NI, Camacho-Vallejo JF (2015) Bilevel programming and applications. Mathe Probl Eng. Article ID 310301

  • Kall P, Mayer J (2005) Stochastic linear programming models, theory, and computation. Springer, Berlin

    MATH  Google Scholar 

  • Karimi H, Ekşioğlu SD, Carbajales-Dale M (2019) A biobjective chance constrained optimizationmodel to evaluate the economic and environmental impacts of biopower supply chains. Ann Oper Res (online)

  • Katagiri H, Nishizaki I, Sakawa M, Kato K (2007) Stackelberg solutions to stochastic two-level linear programming problems. In: First IEEE symposium on computational intelligence in multi-criteria decision-making, Hawaii

  • Lachhwani K, Dwivedi A (2018) Bi-level and multi-level programming problems: taxonomy of literature review and research issues. Arch Comput Methods Eng 25:847–877

    Article  MathSciNet  Google Scholar 

  • Li M, Fu Q, Singh VP, Liu D, Li T (2019) Stochastic multi-objective modeling for optimization of water–food–energy nexus of irrigated agriculture. Adv Water Resour 127:209–224

    Article  Google Scholar 

  • Lu HW, Huang GH, Zeng GM, Maqsood I, He L (2008) An inexact two-stage fuzzy-stochastic programming model for water resources management. Water Resour Manag 22:991–1016

    Article  Google Scholar 

  • Nishizaki I, Sakawa M (1999) Stackelberg solutions to multiobjective two-level linear programming problems. J Optim Theory Appl 103:161–182

    Article  MathSciNet  Google Scholar 

  • Nishizaki I, Sakawa M, Katagiri H (2003) Stackelberg solutions to multiobjective two-level linear programming problems with random variable coefficients. CEJOR 11:281–296

    MathSciNet  MATH  Google Scholar 

  • Rahmanniyay F, Yu AJ, Seif J (2019) A multi-objective multi-stage stochastic model for project team formation under uncertainty in time requirements. Comput Ind Eng 132:153–165

    Article  Google Scholar 

  • Ruuska S, Miettinen K, Wiecek MM (2012) Connections between single-level and bilevel multiobjective optimization. J Optim Theory Appl 153(153):60–74

    Article  MathSciNet  Google Scholar 

  • Sakawa M (1993) Fuzzy sets and interactive multiobjective optimization. Plenum Press, New York

    Book  Google Scholar 

  • Sakawa M, Kato K (2009) Fuzzy random noncooperative two-level linear programming through absolute deviation minimization using possibility and necessity. Interim report, IR-09-021, International Institute for Applied Systems Analysis (IIASA)

  • Sakawa M, Matsui T (2014) Interactive fuzzy multiobjective stochastic programming with simple recourse. Int J Multicriteria Decis Mak 4:31–46

    Article  Google Scholar 

  • Sakawa M, Nishizaki I (2009) Cooperative and noncooperative multi-level programming. Springer, Berlin

    Google Scholar 

  • Sakawa M, Nishizaki I, Katagiri H (2011) Fuzzy stochastic multiobjective programming. Springer, Berlin

    Book  Google Scholar 

  • Sakawa M, Yano H, Nishizaki I (2013) Linear and multiobjective programming with fuzzy stochastic Extensions. Springer, Berlin

    Book  Google Scholar 

  • Sakawa M, Katagiri H, Matsui T (2014) Interactive fuzzy stochastic two-level linear programming with simple recourse. Inf Sci 278:67–75

    Article  MathSciNet  Google Scholar 

  • Sekizaki S, Nishizaki I, Hayashida T (2016) Electricity retail market model with flexible price settings and elastic price-based demand responses by consumers in distribution network. Int J Electr Power Energy Syst 81:371–386

    Article  Google Scholar 

  • Uno T, Katagiri H, Kato K (2007) An application of particle swarm optimization to bilevel facility location problems with quality of facilities. Asia Pac Manag Rev 12:183–189

    Google Scholar 

  • Walkup DW, Wets R (1967) Stochastic programs with recourse. SIAM J Appl Math 15:139–162

    Article  MathSciNet  Google Scholar 

  • Wets R (1974) Stochastic programs with fixed recourse: the equivalent deterministic program. SIAM Rev 16:309–339

    Article  MathSciNet  Google Scholar 

  • White DJ, Anandalingam G (1993) A penalty function approach for solving bi-level linear programs. J Glob Optim 3:397–419

    Article  MathSciNet  Google Scholar 

  • Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making; theory and applications. Lecture notes in economics and mathematical systems, vol 177. Springer, Berlin, pp 468–486

    Google Scholar 

  • Zhang G, Lu J (2010) Fuzzy bilevel programming with multiple objectives and cooperative multiple followers. J Glob Optim 47:403–419

    Article  MathSciNet  Google Scholar 

  • Zhang F, Yue Q, Engel BA, Guo S, Guo P, Li X (2019) A bi-level multiobjective stochastic approach for supporting environment-friendly agricultural planting strategy formulation. Sci Total Environ 693:1–14. https://doi.org/10.1016/j.scitotenv.133593

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Yano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yano, H., Nishizaki, I. Multiobjective two-level simple recourse programming problems with discrete random variables. Optim Eng 22, 1181–1202 (2021). https://doi.org/10.1007/s11081-020-09532-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09532-9

Keywords

Navigation